Skip to content

prasser/subframe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Java Benchmarking Library

Introduction

SUBFRAME is a Java framework for performing microbenchmarks, analyzing the results and plotting them graphically. It supports the following features:

  1. Measuring several parameters, including: wall-clock time, system time, user time and different methods for measuring memory consumption in single- and multithreaded environments

  2. Analyzing the results, including: minimum, maximum, sums, geometric and arithmetic mean, standard deviation, percentiles

  3. Writing data to and reading data from csv-files

  4. Extracting and transforming data series from files

  5. Clustering and plotting results: line charts, histograms, stacked histograms, heatmaps

For rendering, the library uses Gnuplot and LaTeX, which need to be installed separately.

Examples

  • First, we perform a benchmark. In the example, we measure the wall-clock time required to sort an array with up to one million integers with merge sort:
  
// Create benchmark
Benchmark benchmark = new Benchmark(new String[] { "Size", "Method" });
  
// Register measurements
int time = benchmark.addMeasure("Time");
  
// Register analyzers
benchmark.addAnalyzer(time, new BufferedArithmetricMeanAnalyzer());
benchmark.addAnalyzer(time, new BufferedStandardDeviationAnalyzer());
  
// Run benchmark for different sizes
int repetitions = 5;
for (int size=100000; size<=1000000; size+=100000) {
  
  // Prepare benchmark
  int index = 0;
  int[][] arrays = new int[repetitions + 1];
  for (int i=0; i<=arrays.length; i++) arrays[i] = getRandomArray(size);
  
  // Warmup
  Sorting.mergeSort(arrays[index++], 0, size);
  
  // Run benchmark
  benchmark.addRun(size, "MergeSort");
  for (int i = 0; i < REPETITIONS; i++) {
     benchmark.startTimer(time);
     Sorting.mergeSort(arrays[index++], 0, size);
     benchmark.addStopTimer(time);
  }
}
  
// Store results
benchmark.getResults().write(new File("sort.csv"));
  
  • This results in a csv file looking like this:
Time Time
Size Method Arithmetic MeanStandard Deviation
100000 MergeSort 16871734.40 1996647.6291153480
200000 MergeSort 32456968.25 3176739.1862106794
300000 MergeSort 49534981.35 1265261.8748274317
400000 MergeSort 72037158.90 13137915.799871740
  • Second, we plot the results. In this example we use a lines chart:
  
// Open the file
CSVFile file = new CSVFile(new File("sort.csv"));

// Select rows for the series  
Selector<String[]> selector = file.getSelectorBuilder()
                                  .field("Method").equals("MergeSort")
                                  .build();
        
// Build the series
Series3D series = new Series3D(file, selector, 
                               new Field("Size"),
                               new Field("Method"),
                               new Field("Time", Analyzer.ARITHMETIC_MEAN));
                           
// Create a plot            
Plot<?> plot = new PlotLinesClustered("Sorting Arrays", 
                                      new Labels("Size", "Execution time [ns]"),
                                      series);

// Render the plot
GnuPlotParams params = new GnuPlotParams();
params.xticsrotate = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
GnuPlot.plot(plot, params, "sort");
  
  • The following image shows the results for different sorting methods:

Image

  • We can also plot a histogram with error bars for individual methods:
  
// Open the file
CSVFile file = new CSVFile(new File("sort.csv"));

// Select rows for the series  
Selector<String[]> selector = file.getSelectorBuilder()
                                  .field("Method").equals("MergeSort")
                                  .build();
        
// Build the series
Series3D series = new Series3D(file, selector, 
                               new Field("Size"),
                               new Field("Time", Analyzer.ARITHMETIC_MEAN),
                               new Field("Time", Analyzer.STANDARD_DEVIATION));
                           
// Create a plot            
Plot<?> plot = new PlotHistogram("Sorting arrays with merge sort", 
                                 new Labels("Size", "Execution time [ns]"),
                                 series);

// Render the plot
GnuPlotParams params = new GnuPlotParams();
params.xticsrotate = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
GnuPlot.plot(plot, params, "sort");
  
  • The following image shows the result:

Image

  • Further methods exist, e.g., for measuring memory consumption:
benchmark.startUsedBytesGC(SIZE_JVM);
byte[] array = new byte[size];
for (int i=0; i<size; i++) array[i] = (byte)i;
benchmark.addStopUsedBytesGC(SIZE_JVM);
  • This results in plots similar to this:

Image

Documentation

More examples are available in the repository.

To see SUBFRAME in action you might also want to have a look at anonbench.

Javadoc documentation is available here.

Downloads

Library (Version 0.2)

API documentation (Version 0.2)

Source (Version 0.2)

About

Java benchmarking library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages