-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
175 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
import os | ||
import numpy as np | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch.utils.data import TensorDataset, DataLoader, ConcatDataset | ||
|
||
import matplotlib.pyplot as plt | ||
from util import * | ||
import cv2 | ||
|
||
|
||
class Dataset(torch.utils.data.Dataset): | ||
def __init__(self, data_dir, mask_dir, transform=None, data_conf='A', use_mask=True): | ||
self.data_conf = data_conf | ||
self.data_dir = data_dir + data_conf | ||
self.mask_dir = mask_dir + data_conf | ||
|
||
self.transform = transform | ||
self.use_mask = use_mask | ||
|
||
self.to_tensor = ToTensor() | ||
|
||
if os.path.exists(self.data_dir): | ||
lst_data = os.listdir(self.data_dir) | ||
lst_data = [f for f in lst_data if f.endswith('jpg') | f.endswith('jpeg') | f.endswith('png')] | ||
lst_data.sort() | ||
|
||
lst_mask = os.listdir(self.mask_dir) | ||
lst_mask = [f for f in lst_mask if f.endswith('jpg') | f.endswith('jpeg') | f.endswith('png')] | ||
lst_mask.sort() | ||
else: | ||
lst_data = [] | ||
lst_mask = [] | ||
|
||
self.lst_data = lst_data | ||
self.lst_mask = lst_mask | ||
|
||
def __len__(self): | ||
return len(self.lst_data) | ||
|
||
# 1 channel | ||
def __getitem__(self, index): | ||
|
||
data = {} | ||
|
||
input = cv2.imread(os.path.join(self.data_dir, self.lst_data[index]), -1) | ||
data['data'] = input | ||
|
||
if self.use_mask: | ||
mask = cv2.imread(os.path.join(self.mask_dir, self.lst_mask[index]), -1) | ||
data['mask'] = mask | ||
|
||
if self.transform: | ||
data = self.transform(data) | ||
|
||
if self.data_conf == 'A' or self.data_conf == 'B': | ||
data['att_edema'] = np.array(0) | ||
elif self.data_conf == 'C' or self.data_conf == 'D': | ||
data['att_edema'] = np.array(1) | ||
|
||
if self.data_conf == 'A' or self.data_conf == 'C': | ||
data['att_artifact'] = np.array(0) | ||
elif self.data_conf == 'B' or self.data_conf == 'D': | ||
data['att_artifact'] = np.array(1) | ||
|
||
data = self.to_tensor(data) | ||
|
||
return data | ||
|
||
## 트렌스폼 구현하기 | ||
class ToTensor(object): | ||
def __call__(self, data): | ||
for key, value in data.items(): | ||
if key.startswith('att'): | ||
data[key] = torch.from_numpy(value) | ||
else: | ||
value = value[:, :, np.newaxis] | ||
value = value.transpose((2, 0, 1)).astype(np.float32) | ||
data[key] = torch.from_numpy(value) | ||
|
||
return data | ||
|
||
class Normalization(object): | ||
def __init__(self, mean=0, std=1., v_min=850, v_max=1150): | ||
self.mean = mean | ||
self.std = std | ||
self.v_min = v_min | ||
self.v_max = v_max | ||
|
||
def __call__(self, data): | ||
for key, value in data.items(): | ||
if key.startswith('data'): | ||
value = np.clip(value, self.v_min, self.v_max) | ||
value = (value - self.v_min) / (self.v_max - self.v_min) | ||
value = (value * 2) - 1 | ||
# data[key] = (value - self.mean) / self.std | ||
data[key] = value | ||
else: | ||
data[key] = value | ||
return data | ||
|
||
|
||
class RandomCrop(object): | ||
def __init__(self, shape): | ||
self.shape = shape | ||
|
||
def __call__(self, data): | ||
keys = list(data.keys()) | ||
|
||
h, w = data[keys[0]].shape[:2] | ||
new_h, new_w = self.shape | ||
|
||
top = np.random.randint(0, h - new_h) | ||
left = np.random.randint(0, w - new_w) | ||
|
||
id_y = np.arange(top, top + new_h, 1)[:, np.newaxis] | ||
id_x = np.arange(left, left + new_w, 1) | ||
|
||
for key, value in data.items(): | ||
if key.startswith('att'): | ||
data[key] = value | ||
else: | ||
data[key] = value[id_y, id_x] | ||
|
||
return data | ||
|
||
|
||
class Resize(object): | ||
def __init__(self, shape): | ||
self.shape = shape | ||
|
||
def __call__(self, data): | ||
for key, value in data.items(): | ||
if key.startswith('att'): | ||
data[key] = value | ||
else: | ||
data[key] = cv2.resize(value, (self.shape[0], self.shape[1])) | ||
|
||
return data | ||
|
||
|
||
def get_loader(data_dir, transform, data_conf, use_mask, batch_size, num_workers, type): | ||
if len(data_conf) == 1: | ||
if type == 'train': | ||
dataset = Dataset(os.path.join(data_dir, 'train/train'), | ||
os.path.join(data_dir, 'train/mask'), | ||
transform, data_conf, use_mask) | ||
elif type == 'valid': | ||
dataset = Dataset(os.path.join(data_dir, 'valid/train'), | ||
os.path.join(data_dir, 'valid/mask'), | ||
transform, data_conf, use_mask) | ||
|
||
elif len(data_conf) == 2: | ||
if type == 'train': | ||
dataset_a = Dataset(os.path.join(data_dir, 'train/train'), | ||
os.path.join(data_dir, 'train/mask'), | ||
transform, data_conf[0], use_mask) | ||
dataset_b = Dataset(os.path.join(data_dir, 'train/train'), | ||
os.path.join(data_dir, 'train/mask'), | ||
transform, data_conf[1], use_mask) | ||
dataset = ConcatDataset([dataset_a, dataset_b]) | ||
|
||
elif type == 'valid': | ||
dataset_a = Dataset(os.path.join(data_dir, 'valid/train'), | ||
os.path.join(data_dir, 'valid/mask'), | ||
transform, data_conf[0], use_mask) | ||
dataset_b = Dataset(os.path.join(data_dir, 'valid/train'), | ||
os.path.join(data_dir, 'valid/mask'), | ||
transform, data_conf[1], use_mask) | ||
dataset = ConcatDataset([dataset_a, dataset_b]) | ||
|
||
loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, drop_last=True) | ||
|
||
return loader |