-
Notifications
You must be signed in to change notification settings - Fork 312
Added a jupyter notebook for converting from radiance to reflectance #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
You can view the notebook here: https://github.com/planetlabs/notebooks/blob/toar/toar/toar_planetscope.ipynb |
Matt this is great! will give it a look now |
toar/toar_planetscope.ipynb
Outdated
"**In this guide, you'll perform a basic Radiance to Reflectance calculation on PlanetScope imagery using just a few lines of Python. Here are the steps:**\n", | ||
"\n", | ||
"1. Download a PlanetScope image\n", | ||
"2. Extract data from each color band\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Might want to use 'spectral band' rather than color band here, with analytic products we tend to avoid the use of the word color
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agreed, done
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Step 2. Extract the Data from Each Color Band " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
same comment as before around using spectral band
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Again, you could skip the download step and refer users to the NDVI guide. Your guide could start with "extract data from the spectral bands" or it could start with Extract the coefficients from the metadata.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That's true Dana, but I really wanted this guide to stand completely on its own as a usable product in the same way the NDVI one does.
If we really wanted to break things down we could have one guide that just does downloading, then several others that all work on that same downloaded image, but I think it would interrupt the flow and self contain-edness of the notebooks
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Step 5. Save the Radiance Image " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this step is "Save the Reflectance Image". Not sure if you want to include this here, it is often the case that reflectance values are scaled by factor of 10000. This allows the image to be saved as an unsigned 16bit-Int, the same format as the native scaled radiance
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
^^ +1 to @NickWIlson33's suggestion. That's useful info to include.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agreed! Changed.
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Step 6. Apply a Color Scheme to Visualize the Radiance Values on the Image" |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Reflectance Values rather than Radiance Values
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
👍
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"In the last step, you'll use [Matplotlib](https://matplotlib.org/) to visualize the radiance values you calculated for the PlanetScope scene." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
same nit: reflectance rather than radiance
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks for catching all these!
toar/toar_planetscope.ipynb
Outdated
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIlCAYAAAD1xjhlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmQrNlZ3vl7z7flUll71a2799VVd0vqpiUhBEigBRCL\nEAgZbGDEwABGGHDY2GbCHuMhmHFg7HBMDOHBJjCBwRoj2WAQEtpA1kALJLVaraXV6r1116q71a0t\nKyu3bzln/nhPZlY3ElL3vbcX9flFZNyqrMzvO/llVvd56nnf5xXnHIFAIBAIBAKBQCDwfMQ80wsI\nBAKBQCAQCAQCgWeKIIgCgUAgEAgEAoHA85YgiAKBQCAQCAQCgcDzliCIAoFAIBAIBAKBwPOWIIgC\ngUAgEAgEAoHA85YgiAKBQCAQCAQCgcDzliCIAoFAIPCsQ0TuEJH3ishlEXH+9p/9z9y+203P6EID\ngUAg8JwnCKJAIBB4hhGRH3/CJv9DX+QxZ/f9/Ge+1HOf8Jw7n3BcJyKViOyIyCdF5BdFpPEk1nld\nj/c3nGcK+CDwPcCBaz3e9UBE3iIi/4e/vf6ZXk8gEAgErh/xM72AQCAQCPw1vl1EXuec+8gNOLYB\nZoBX+tt3isjr3VOf0n29jwfwDcAh//UW8OPANnDlGo55rbwF+F/2fX/nM7SOQCAQCFxngkMUCAQC\nz05+9Tof74PAa4A3Ae/dd/9rgVc9C463n8P7vr7fOfde59xHnXOPXeNxA4FAIBD4awRBFAgEAs9O\nXi0ib7qOx1v3ouIDwE8+4WfHbvTxROQ7ROQ9vicoF5GrIvInIvKaJzzOAW/fd9dr95Xn/fiXW5SI\nvFhEfltETovIQER2ReRjvrRQvsjjZ0TkfxeRe0SkLSJDETkvIn8oIreKyOv9mva7Q7+8b013+uOc\nFJHfEZHPiMgV/xq7IvKgiPyaiCw/4bz7Sx3vFJHb/PVp++d9QERe+GTX+4THfr2I/FcRWfXr2RaR\nD4vIm7/cdQwEAoHnE6FkLhAIBJ5dbKLlYS8EfkVEPnCN5WdfCWs38ngi8m+Af/aExywC3wu8SUT+\nvnPuN6/1pCLyFuC/ArV9d2fAq/3tDSLyo6PrKSIngD8HbnrCoY762+8BO1/h6W8GfuIJ9yXAi/3t\nLSLycufcFzveLcDdQHPffW8E3iMiX+Ocs09ivY/4x/4c8Os8/g+fs8C3Ad8mIv/aOfeLX+FrCwQC\nga9qgkMUCAQCzy5K4Jf91y8D/s51Ou6yiHyziLwR+O19938K+NiNOp7/+UgM9YF/Cnw78AvAEP3/\n0K+LyC3+Ma/h8eWC9/r7XgN84EstRkSWgP/CRAz9JvBdwI8C5/x9P8LjRcs7mIiLDvBL+57z34EK\n+Kw/9wf3Pe93963pH/j7zgH/G/C3ge8AXg/8LeBP/c9vAt72JZZ/EBUyPwD8I6Dw978EvVZPZr2I\nyG1MxJAF/pVf099DxTbAPxeRb/0S6wkEAoHnFcEhCgQCgWcf/w3dXH8N8C9F5I+uwzHf6G8jLPBb\nwC8+RQfqKz3e39339R8Cd/mvPwn8f8B3o/8v+gngnzvnPvqEUrG2c+6jX8F6fgiY8l/fj4oHgC7q\nnPwL//3bgN/xomF/r9P/7Jz7k33f/96+rz8qIuv7vj//xDU55x4Ska8Dfg64A5gDoies8Ru/xNoL\n4M3OuQsAIvJdqNABdY/+7Emu9yeY/MHzz5mIsgeBP2ZS4vg2//NAIBB4XhMEUSAQCDzLcM5ZEfkl\n4N3ArcCP3YDTGLSMrMHENbgRx3vJvq9/1N++GLdf4/n3n+d24K++zHn2P34IvP9aTi4i/xJ1bP4m\n5r7E/Q+PxJBnc9/X8/7fJ7Pe/Y99g799Ma71mgcCgcBXBaFkLhAIBJ6FOOfeg7oooCV06TUe8u2o\nY/F1wHl/3x2oG/VsON7Ul3/IdeG6n0dEEuCf7LvrHah79hrg3+67/0v9P3frCd+X+w9/zQv80jxd\n1zwQCASe1QRBFAgEAs9eRmVex9E+k2vCOWedc58Gfmrf3d8sIt9/A4/30L6vf9U5J0+8ocJqf/nd\nU2H/eT7+xc7jzzUSAQ/ue3yGlu49jiek0tl9Xz/x/50LPD4Q4Wecc3/qy+oWnvQr+eI8mfXuvxbv\n/BuuRXCIAoFAgCCIAoFA4FmLc+7DwF/cgOP+D2B/D8wvfbFI6ut0vP+07/5/KiL/RkS+W0S+S0R+\nWkT+PRpI8KX6a75Sfh/Y81+/2sdQf7+IfJuI/JiI/CsR+Szwv/o1PwB8Yt/zf09EflFEvlNE3ioi\n7wS+Z9/P95exfbePEf9mETmKDozt7vv5r4rIt4vIv+avJ889JZ7kev8zEwH3VhH5jyLyvX7NPyki\n/5eIPMr1C+wIBAKB5zShhygQCASe3fwL4OM34Li/wqTZ/mXAm4H3XO/jOec+ICL/Fk2Xi9HEuSdG\ncF8zzrl1Efkx4J1o0twP+NsT2f8afwS4E42snkbT2PbzB/u+/h94MQW8Avgz//UvOed+RUR+HQ3C\nAE2eG6XP3Ykmzl0PvqL1Ouc+LyL/EPh/0D98/rS/BQKBQOCLEByiQCAQeBbjnLsLeN8NOO6fAffs\nu+vLBQI85eM55/4ZGvv8x8AlNFVtGy0D+3/RqOr97sdTXcMfAy9H0+6+AAxQ5+YL6DX8GeA39j3+\nNNr39MvAZ1CHqfBrfDf7Ss+ccx9C+4RO4eOtn8Av+dtpf977UAHz9i/y2Kf6+p7Mev8D6rq9A+3x\nyoFdNN77v6NBHe+6XmsLBAKB5zJy4+f9BQKBQCAQCAQCgcCzk+AQBQKBQCAQCAQCgectQRAFAoFA\nIBAIBAKB5y1BEAUCgUAgEAgEAoHnLUEQBQKBQCAQCAQCgectz/rY7cOHDz/nUh9W//KPkfkjABy5\n/ZXP8GoCgUAgEAgEAoHnJxcuXPiyc/ae9YLouYjtdZDyDDJ/mLVH7gPAba4CUJx7iPjAMY596w8+\nk0sMBAKBQCAQCAQCBEF0YzAGbIXEKViL625BvYXbvIBpTuMGXVbv/hAMOhCnEMVgLUdf/aZneuWB\nQCAQCAQCgcDziiCIbgCmOQPWjr+Xxgxu57J+YyvM1BJUBSQ1ANzeDjJ7gNWPvReZXsbNHkJ62yqW\nqpIjt9z+TLyMQCAQCAQCgUDgq54giG4EjRkkzqDeUoeo14Yyx+7tgIn0Mc6ORZNkDYgzEIO9chqu\nnKZ64auI4wiGXdbOnQExsLehj8uaHDl+4hl8gYFAIBAIBAKBwFcHQRDdCKoSmvNQ5rjOBkQxttfB\nDQeY1iyuLHCDrjpJAFlT/x12kdkDkPeJLj6AO3oHkk2BraDMYXoZd/kxZOkEaw/dS4eMqd4VGHYh\nSjj6Dd/xzL3mQCAQCAQCgUDgOUgQRNeZ1b/8Yxh2cdsXIa1BvwPGIGkN4gSXDzCteSROtDxudx23\nu4FML+IGXSRrQlpHsiZuaw0Wjk5cJYCkroIraxJXqGM0Oven74RhF7u3jampyJK5Qxz5mm94ei9C\nIBAIBAKBQCDwHCEIouuM3dtB0hqSWVx3B2nOgquQJEOiiGjhELbbxswuqXtUlUicQJzhyhwBLY8D\nxBjcmU9THX0psQ9ekAWN86YqqbVXKWePEu9e1hI8V4GziInUdYpTXN5n7dH79VzGIEkdCHHggUAg\nEAgEAoEABEF03TEzi1reljWRJFWRIhFu2EMaLUjrGGPU5QFcWWCWjmsS3SiIIUpweR+iBJk7RHTx\nATj2Ui2dsxZsCWKQOKPdbrNQDfWcgw4kNWRqFmnMqLAyBvI+0pjF9XZwextQm2btwU/jhl3tdQJc\nOYRhl6Pf+MZn6tIFAoFAIBAIBAJPO0EQXWdcfw9MhJTDcQACtkDqU0gUj90fkrqWxiV9jd2OM+0p\nijN1hsQgSYobdiGt4zZXqWYOMhgMmKolKn6ml+lduMTc4ROYC/dD1tDjRolfjMX1Oiqe0rquZ29T\nBVp3S7+PM5y1WqKXD1j9+Puh3ho7Sa7X5ujXv+EZupqBQCAQCAQCgcCNJQii64ykNeygi7i6hiQ0\nZnCDDm7Y1/I5W+gD0zrkfSj6uH6soshZxBgVUbvr6u5UJSR1xBjizhWmGjPkVujmwlzdcLQpXLh0\niSMHTuKunELqLVyRA6jQaS1CMVRnKM5gekldploLyiHO9zg5Z5HWgibiAa7o+3OnrH7ig2ASXfuw\nB1kjOEmBQCAQCAQCga8KgiC6jpz70O+Bs1RXLyAmUodn0EFaC+oMpXVo+3lEVaF9P3GmwqModO6Q\naIkbMBYrlEPImrjuNjJ3iLS7TU8MnW6P2vQKRxZiqsoSTS+DTAIYxBg9T5RAbVrL9/LBZMGjQIYy\n13jwqkBqLV2X71lywy5IpMKu19bZSRKx9vm7tayvzHXNUYyk9RDgEAgEAoFAIBB4ThEE0XXEZFpm\nFh84pslwcaoCA9T1GWj5mssHSKkuDoOO/isGGjM4LzCktYjb21KxFBl1bEBT6/I+s1FML2qRJCpc\nLl68yNGDy7C3hdSa6gpVJeQdJK0jUYyzBgZXscM+0aFbtaSuKlX8VKX2LvXayMwyVIX/WQLdbWgt\nqPs0NFqWB9qXNNiFIodeG1fm46Q7WTiK21xFVm7hyAtufhrfhUAgEAgEAoFA4CsnCKLrSdaAIseV\nXdxgB2m0MFOLSDaDVCUuiql2N4kWD6tbk9THpWuI0RS5rKnOCyBpHTcKWrDFpMSuKmHYpR51KZKj\nJAYOHToEggqvMscVfSSp4wBqLVx3W48zs4LZXZ+UxNkCmVrG7W2rCyRG47/nDiEDFV8ua6pbVfTB\nJCquem0oN3Teku1Ca1GPn/ehMYvbvgDNedzGubFIwhiozyJRjF0/w7Fv/cGn+Q0KBAKBQCAQCAQe\nTxBE15Mix3bVKXFFTtScgf4OzhbjUrZoZgnqsyqCQAVR15e1JelYDLlBV1PqqoE+1moZm+t3dFZR\npG9d3L4Ii8eIem2udIYsx7k6RDDuSXLtyyq4hl1Nv1s6oTHcPvjB9TvIzDKuu6UiatjFrd2PzB1W\nIZU1obuFTC9rwMOgq8fPmnoMk4yPBahgGl0T45PusqaevxxqGWFWZ/XuDyFzh1RsdbfCcNlAIBAI\nBAKBwNNOEETXkyTFzC5BkVP2uypixPpyNCYuie8rcvlAXZcomQxxbc6rkPE9PGOGXU1/y5rq/swd\nhs4GAO7iI9gDNzMXN5BqMA5GIM5w7UuQ1HHtdQ11KHOdi1Rv4fJYxZWzKkqs9WKliYszXG9Hy/5a\nCzjAVSVidW3OCzKK/qQXabDrI8a9YBqJvmFXRVNVaspdc04dslpLb/2ODqnttVm992P6+LSm6xh2\nOfry197wty4QCAQCgUAg8PwkCKLrxOrH36+BBVEMtsSVBSSpT2VrQlVq0txoCGtfe3ucq1RQuEoF\nQ39HS+niVEvjxIyFgTRmdDZRkmlpWlpHfElbNGgTJXUut3sckCEMOipMfLS2zK1AZxM5dgdu57IK\noe6WOj7dLX0RtWkVSv2OhjF4R4m+73MqhxoHnmoPkd1cw9RbKtziDJlaxA28sOp1kGY0DmcgS1U8\nOe9UxRkSxZTWEXW34MBJaF/Wsr1hF/IBDpDmPGv336Mlfnvb0JjR40BIugsEAoFAIBAIXDNBEF0v\nqlLDEhrTVNvrUBZ6X5FrL44YFUOiqXHSmPGhB4NJAl2qQmjsuAy7WkZH4geyWtxwB/IBMn9Ehc3U\nHEKpP9s4x8ricbb2UuZbi7jti0itpefptbU87cop31O0paV7gExp/4/rtXHlEMmaVOtnMAdOqnvk\nXSV1ugqo9GNjak1IUqQ5j9tdx7X7yMyKOliNlq6/1tIyveY8blcDHczSMXWMgHjvKq4xi9tdR+YO\n6euO4nHQw+MG1tpSAx5qLTCG1b96z76yPYM9+BKOHz/+9L3ngUAgEAgEAoHnPEEQXS+SFAotEXNF\nriICnUtEnKm7kg90aGucqIAY+vCEONFSuryvpXPlUAVB0Z/03oxK1EwCWTSZF9Tv6PEHu/r99gXm\nlk+ytb3NfHNORVZnQ2O7876KCWfHTowjQepNFWXdbaS1jNu5jJk/pMIta2r6XHdLnztynfY2keWT\nuM6G9iMlde1x2tvQXqOsqWuMMyROcVfP4KqK6ODNGhQx1CAGN9hVweOsXh/wrz1HFo7gNtd0llJV\n4KIEiVPKqSWi9iUVWe1Lup4kJYoiVu/+0ERU7q4jC0cgSjhy6x1P44chEAgEAoFAIPBcIQii64Tr\ndXBljpQJmAjTmFbXpiyQRozd1vlDkkZUu5uIiTDLx7FbF3H5ANOY0fk/+WA888f195DmvIoHwG2t\nafx1nGl8tzHaf+SsRl+ndXVyLj3C/PIJrmwWHEi8u7JPNEm9pW6PSTS1zlmk3tJ5SdaqoAAd2Frm\n2ncEeh5jVOiYGLe77oXNgh4PfGlgl2LmCElrGS49ovONZla0jG+UoLd8Qh2uOMPlfS0HrErtU4oz\nnLW4y4/puo2BtEUV1Yg2ThOndRWgcaq9R/kAt3VBna6RkBzFiUsE1rL26P0qNBuzWg6Y1DlyLLhJ\ngUAgEAgEAs93giC63qQ1TGtW3Q5nkayO1FqYRgu7twO2wtSaSGMaqlJ7cKIYyiG218G0FnDlUOOw\nG9MaYJCkKniml6G3g4u8kzLoaOncqASvzPVxtsCtn+FAvQW1eWjMwfop7RGKUxUiC0eRqtAeomEX\nt3NZ3SmT+J4mHwG+fUFT6XbXVWz12iryphfV0Rq5RlnTh0gY6LVJZw7S2RsSzx3HGEOe57RaGW5z\nFYDCGZI4Hc9XGqfngb7+XluFUFXoa80HxClUG2uYOEOaczrDqbUIxbrOToqSiTDz13R8jMaCltuJ\nUZHUvsza/fdAkulr8ELtyM0vefo+K4FAIBAIBAKBZ5wgiK4Da5+/G3vlNBKnPqmtp2VwjZlxORhx\niqQ1JGtg+x3EGEhruO6OOjZRjGnmOosorfvyMauOSpHrxl9GjlCl84CWT+rPe23cVKIhCc15JJ1T\nURPFuAsPIgdO0p06SDOLdT5QY1YdJh/sgPhYbFepuOm3kUMv1hfnrDpTaQ1pzOrx8746RUndByVE\nukZQNymKcav30Tp6B8Qpe70+VVVBo6UpesMuSZJoeEJV6usHFScjdwf0NVQF1bn7iI7ejttdx8wu\n4bYuYC+fwsytIM15LYvrbuPWvzBxyqoS19tFFva9UcaLpHww7m2i39brljUhqauTNHKWjBk/9chN\nJ2/45ygQCAQCgUAg8PQTBNH1IK0jU7O6GTeGaOHgpD+o3hoPV5XWAgy7mKm58VwiV+aItVANcMMe\nMjU3Oa5PiKPeUpdjNM/H9/aM462zpoqKekt7k6oCaUTjJDrKnKa1UNW46qZYTirtCRp21VWqtbyz\ns4MsnaDauUyUNXFXz4wDDLS8bqguVVrX5LnuFjK7oq9j57I+rrUA/Q6238VceBCSlObh29nY2FCh\nMeggKzdDb4dy/jjD4ZA0TUk6VxAxKobEzy4qh1TbV4jmDtCPm9RMX/uTkroKShiLIDfsIVkDmV1R\nN0sMUp/SayBGRZCzUJbQmMGZmKtXr7I80xin+o2veVWAAapKBShw7tw5oirHbZzTtYnh6Ctef2M/\nV4FAIBAIBAKBG04QRNeDcQJcD9fvYLK6Co3dDZiLtfxLzLgsy/V2tWSuN1RXqehDmWN7HaJsGze9\nrOVrEk0CFkwCOxfHs3vczmWYmtP7fXmYywcqKLKmxnZ3NpDWog5S7e8gzXmWIouroJ3MM9uc9306\nKZS5ion1UxqoMOyq6Opu67qn5jQGu6vR1663o8EJO5cnqXj1WdjzAQvGqEhpLSLO0mw2J+7RzmUY\ndIjFEEcx7FnyueNksUaM05z3TlFBvHIzJHXq7cu4/g5uEOnalk6oOPHpfK7fUfE5GmKb1fXa1Vrq\nPMm+8ruqRIDlVm0sTEdR3urA+bK6kWOW94kyHzwR+dlNWZO1Uw9rOl5S12Q93w8VhFIgEAgEAoHA\nc4cgiK4DbrCrm+y0htvbwVqLac1hO9uIH7Zq189gpuZUnIAKF+tLw8qc8vJ5TGt2ch9oCIK1WuLW\n34GkpkLJzw8a9+6YZLKxz/vjhDdpzOgQ1ihWkRHFkHcgSpjZPUd1+Haig7fiti+Cq3CdTS3zG3Zx\n7cvIzAriLC6taerbzCxu45z2Ho1ew6g8bdBV1yZrQq+tkdxxCu3LEKckzUWohhPxlNb0tUUJ9HZI\nznwSN3tARYfdUDFT5rBxXsXdoKt9QsZgNy/A4P7JOYzBzCzrc/wA29F1oOhPSt9sqWLNVVSkRFGi\nz/EljfQ7Pvo8e/z9YsZJfzI1r8cq+rr+qsTRB6MlgFJrsfbQvSpGGzMqxqqCIy95xY39EAYCgUAg\nEAgEnhLmyz8k8GWRSOcFlQXOVhq1PS77ymGwq66Ls0ijpb1Esyu4qkIy7eExMws4W2G7uxoWMOxq\nCZ7fnMsh3+xvNekNV43FB6C9RGK0pK2zoQLKqeBww666KEWu7koUQ72F2V6Dos9g7jhy8EW6+e+1\noTatjlOvreV+JpnMCMqauL0N/XoUfhDFmKXjutZ+R0VVzfcLicHtrhPvrE5CF0apeKCvw9lxyARF\nX12mkas2vTyJ5C5z3PZlzNSsLzv017jI9es401LFkZgZdidlhRJBfebx71sUa2x4v6NCaeQkjcj7\nuLQ5EZ7NeXUCOxu4zbXxY8bXIop1rcMuMjWHK3N10oC1++9h9VN/Pv539d6PXc9PYCAQCAQCgUDg\nKRIcomtk7fRjOgsnqSMNiBJ1QOzuJqbR0p4a452IOPNzfFLdXF85Tf+uD5Dd/ipMU2O37aA7Dk2g\nNQ2DXaQ+rxt80H+TujoVtdY4PAEYCx4aMxrMsLuu56lK3fT7AbDOWpBIhVGUULv6KNutY8zVW9CY\n1dfjgw0kSXEb57Vczg9LHUdhF4Oxg+K6WyoqfFIctlBhlzV1ff2ODqmdWVahkaR6rJ7OUZLWgpbS\nRQnU1HUiSfW6VSVmdgnyPjJ/WCO2o1jX0O9M3oy0rmEW1uL6ezrzqTGL29vW89pSnbC0SZR3od/R\n6yhGf1af0SS6yCftVSVSDCavqSpVePY7Y/FDWkdq0z6OfAdnNZ1PhV6ls5J6be3xGna1tM7Pglq7\n/x5++w/fz0/94Peq4OvtUG1d4qbv+amn46MbCAQCgUAgECA4RNeM2ziHJHWIEuzOVcr11ckGuqbz\nfqTW9FHWlZaKAVQFsnQT7/4H79DNPoCzWvo1Kn8bdnVzby3uyikNT8iaKhbyPhU6E2g80HTkChnt\ndWFqUe83Rl2pmWWk1tLStsEuzh+HrMls5zxnt/pQbyHzR5GlE+oSFTkyf0SdmyRTATRKvptZUcHl\n1EWi1x733GASDZGI4nFP0bh0rbWoaXq1lrpGaU3L9kCvz2gQba8N1mJ7HQ1FSOt63eJkIsy8KBkn\n04m6cpI1fE9VoaVre1uaMufZK4Cp+XHZG6BiyFVakjjYHQctuP7IseuP1y+zK3qupK73eZG5f4iu\nJLouGfVaDbvaZ1SV5M0lmF4mz3PcsEt56rMMPvVhqqsXOPW7/6e6SB97L2ufv5u1z999PT6qgUAg\nEAgEAoEvQnCIrpVUxZAYQ376fqLWHCSpOj6Fn9NTFX4mTqKuh7W47jaS1njr2ieh19bY7rmDk4Gi\nxsDuVcgauskeDWf16WvlubPEx8ENu1RXzhIdfRHluYcBMDML5KfvJz5wDIDyynniA8eIV45TXjyN\n1Js6GHYe8jMPUG2vkxw6wfHlY1xcTzk0U4NiiLT8rKEoQWotLf8azQcadjWwYZRE56yGPFTluBfH\n7a5PBEc+wPW0NE2ac1oyeOGhSbqbj/6uVh/GTM0iMOlHqjfHJXCktYngjGIvYLbHQk0Wj08Gxo5E\nWJJp+MHuOkwvIwJTtovb7GiUeKqvl3oLfFgEed+7Ri2N9e53fEqd9ja50ZrLob7uMte1JF4w1jX4\nQupe9Pl0QNfvQDkkcRYH1Go1PnjPw7zxRYe1T6rWpFh91Cffacqgy/usfvLDk74qH+5w9NVvejo/\n6YFAIBAIBAJflQRBdK1UBW6wi2RNaq94wySFbO4woA4SoOJi2FXxECW6Ubd+g92cR2a7ECXcv96n\nKHoYY3jZC27C7a5TrZ+lOPswptkiPnAM292luHAK294kWjpMNLsEVUl+9iFMaxbT28XUm9jdTWy3\nQ7x0GIkiqs1L2L0dJB9gOztEnR3KS2fJXvL1FGcfwlUVB1/QguYhGO75sATfX2MLdWkaMypwRv05\nzTktzxt21SGJUGGR1L0Q8H1JWRPyTSj6uM01JK0jB2/F9dqantecg2GX+MRLVbxML4+PT9EHiagu\nnSJqzHiBqYl1mqrXwO5cxRzQ6wX45L3CC7ICmTusz+u3cb0dJGvqDKa05kvkfOR3VfpZUh11mpI6\nVZQSGQPZtD6ns4HrbGjv0/TyWPhJ1lTXLckmgixKcMMdZOE47uxndF01nbsk08t8//d/P1EUUZ36\nGNHcMq4siBcO6kDevY2xkKIc6uvKmrjOJlKfYvXuD+n9ozlSvszw6Mtf+zT/EgQCgUAgEAg8dwkl\nc9eIvXJGy6A2zuO6O9itixSf/0uqhz+Gi9J9w1StionIx2THqW7QU009G5XBxXFMr9cjzzVQwe3t\nUF1ZBVsRLR3GNKeRepP6134L5dULuEFP+46sxTSnSV9wO9X2Vartq9i+zhkqLp2hvHwe29nWvpq0\npol2QHzwJoqzDyH1ppaY5QMuXLgwdijE9yONKXON0j7gB5V6YeR2N/T1jIIg+jsqokZBCqCzmgD2\nNnB5n66NoOgjSzepiDQGVw511pAx2oNU5uqs5X2igydVaDg7EQG+BNENupSn79PzHNahsmbhsB96\nm4zDG6jPIFOLmtznS9sohpNAh+llLYlbOqGR6ECE9m1RFdovNQptwJfTmUSFjw+EcDuXVcxZq6mC\n1uIuPTIJmxh2xxHgs2bIPffcw8bKy/j0YIZo8bAGbBR9ff+7W+rQrdyin5W8rwEUoMfwM64wxvdQ\nZfz8z/+wazs9AAAgAElEQVQ8q5/9S1Y/+WHW7r+H06dPX98PfSAQCAQCgcBXEcEhugZWP32nblr7\nHT/Lp0DilPjgTeoe7G3iRoM+s+akN8gHBZA1obuNm1rQnp3BLi+eSeDkTfocZ8FEmjwXJxRnH6Zq\nzUJZYNubxEuHMY0W5ZXzRAdvRtIaxflHtccmTjD1JlU+QEyEZDXcoKeO0uJhilP34fIBLh8QLawQ\nHzhGeeks+YN3cei2b4LCO0G1ae92JCC5OjztS1CfRRozGjkO2ic1GvI67HoBUaogSevqBO2fq1T0\naUa7sHIz7uIjKkamFnWW0O66CrHjL8ed+bSWpNlCS9GSdBJS0d3GVRXV9jqmpWV20lqAzqZe22FX\n3ago0fU0mlr6ZkuojPY/lUNf9hhr71CcaoJc1kSSdHx/1VwkGvU1STQRZEUfbKGCLkpUVPoSQqmr\na+P2D9Stt9RFqkpKkxADn/vc58jznO96w7dQ3P0n3Fd7AV9rre/FMn7GlE/Py5peaKKfD38bzUB6\nZHPAa17zGn1PZnSIbepyVldXEf95AqdlhmI4csvtT/evTSAQCAQCgcCziuAQXQu+dEwaM8j0Mmb5\nBDKt7oms3KwpY1Nzkz6aUW+QDxLARFrOlXcZOh8xPXI9fDqbJBnxwZu056c1SzS3rN/X1NEpr5zX\nuO/uFrVXfx8SRSpyWnNU7U1dp09eM1OzuH5XS+n6Xar2JtGBo5RXVikvnUWaWsrFsMvl7T11NOJU\ny9ZAN+I+fY1BR4MC6rN638hxKfoqMLrbKp76HU21c9VkwGyRq7BwFnYuYw/crD8bdnHbF5HmvIqL\ntc9reEGRQ20a2++ARLjdq+MZQXZvB1NvYqbmiG79pklAQjnEdtv+fSrUfRpFZZt43JOls5A0BW/U\nmyR1vQ6u19YeqaokGnbI84I8blDNHoajd+i56rNeIEXqBmVNpK7R6lQliNE+JVepu9Rrj4VNnO8B\n8NKXvpSFhQXe+Qd/xDse6/JSuTIJoIizSXBDvTVxtUYibxQHLjrU9n3vex+vnB5o8h2MHTQRxp+3\nsavkLGuPPcjaI/dNbg/dez1+MwKBQCAQCASeMwSH6FrwboWrSiSt0zV1mr70Sx2BnNwKaZTg+h1k\nNDfH+YGexg/6NDGZiSjLEpGYKB9M0tmyJm7QwzSnVQBdPo9ptrDdDnZvh2huifjgCS8U1rHDPsQJ\n1fa6lnx5AeaqimL1UaKlw0hWI33BbVTb69jOjg477e1Cb1eP2+8Qt3x/TpTA7hXtgVo4grtyCjn8\nYqrKYs59RkWSSfTfkQM2ck/y/sTFsHYiQkYuj0+Ni/IuHLkdti/iulvanzMqjZsyY6cj8kJR5o+o\nGwXEc4cgqePal3GXHtbSst4OsnSCaP7oOBSCYqiOjzEawz0KjLDlpFwuziCb0p6g0eylMgdrqbIW\niTFIMSC3EMfxOIrcFf3JANyGLwscdr2royEIUm9NXJ56S5/X7yALR/nWV9X5i098mp2dHaIoIr7t\ntRrcYK0+P62B8dfMDif9QlE8mcGUZPzab72dX/i5t00S++JUn58PJqLK2cnsJBOPY9xxlS9PNKzd\nf4/OU/IJeRjDkVvveHp+pwKBQCAQCASeZoJDdA3I9LL21/io60Z/QzeVQ51xg4lJq4EO6kxS3ZjD\neIaN5F3dhNsS55z+yJW6IR/NHfKOQPLibyA+eJOWZFmLZLVxnPbw/rsg71NeOkNy5IXalO8dpGpn\nC1NvEh+6CTO9gKk1cUVOefUCxYVTSFrTY5oINxwQzSxQnH6AxQyciSdlWr0d2L6I3VyjvPfPMGc/\nhcwd0oGxWVNdnZELFGe6ia+3dEPtRYAOP61PhssWGusNTGK1R7OUrG743d6GbvhHoQ3WTvqw6i2N\nFk/r6tLNHNR4bV+uNxZDWVOvsXemZGpuIgDGiXXa5+WunlbXzyfpAZT1WaJIxRBxSlrsPb78bUSS\nTaK5fUJcdfU81fpZLat0VksQ+x1cmev3/V2IEu677z76fX1u+dBH1W2qSohTJM70+ljtOxqLINBr\nNn+E33j7f+Mf/923qhgavaZRBLp338ZiaPRzo8Nsx48VM+5tAu+UGQNxytqj97P6ubs4d+6cRoLf\n/aFr/O0JBAKBQCAQeHYQHKJroDAZZRyRNuaIXIkUQxU/UYwr2sigowly9ZY27qd1yrIkiiLt57AW\n5xxiLWIsMZXONfIpZDg7DjQoHvsMybFbtT+pLEhWjpGXBWZmgdrBE+As8fJR8kc/A4BEEdHCCv0H\n7ic9WqNcOwWA3dshPnyS8tIZbK+H3dshOXhCRVGSUl69oKfubiGj0AfvfLj2Jez2VX3MTS8iXjiG\nW70Pai11S+YO4xpzSG9bXZ6q1BIxmCTqlbmW4nlXQ5xVETHswtQ8tt/RyHJiv0Ev/ayh2uOPE2c+\nsMFOerJqdVze18juUXliWlMRIN6Zq81Av0PVWiYqcxWurcXJsUGPLUbFCxDtXNA1N2a8mIv1/cya\nyEhw1HSILqCOlQ9OiFpzGp2e1tUpiuJxX5l4F5EowVrL9PQ0P/Xd36RhEqPSw3KoTk1jxn8k/PXy\n/Ut3n11n51MP8fde/5LHi6GRsBkJtqpQkWliPf5IWFotPRyXQo5620Cvwah0TwySpFy5coWDBqQx\nw9qph/mdd/wBP/l33qyP89c4uEmBQCAQCASeSwRB9BQ5d+4cg8GAJEkYDAY0TaXpZKPNeb+jYsBv\nsqXWhOEecdYkzwvSOFKHx/oN60Dn00itRdFcxIghiiKctZjWLNX2OsMH7taZPMaQn30I2+8SlQXl\nlfMkx27Ftjc0YGB6AYkibGeHqdtu1zKxfIDUmkitgWm0wEREs/NUm5dhYQVshaQ1opkFdVJGG+OR\nG+MseGdpcPky6QvvwO2uU5x/hO27Pk463WDqa15Bcts3w+wKtNfHvTt2dxMzNadzi7pb+jqb8+qa\noE5bpzdganMVM7vy+OCEKMF1NrTELalDFGn4wciJ6rXVKQKd7TS9rOKq3tLyNR944bYvjkvgyqkl\nYldOysiGeypwGrNIVeBMiZtZQZyltI6qtaKlbAiVgyhr4q6e0bhxa7VUrvBuVHNeXR8vSGT5pIqy\nqlSRmKTI3CHc5jkNm2hfQmYOMjU1xQ//8A9jz3wCc/CkrnskCJP64z98JoGiz//9jvfyC//4H2mf\nU7zPnRoN5x2FWICKuVG63WhI8Ki3y5cNOl/iKCO3KMk0vAH0s5BkHJIOrqvH+3e/+Z/4+Z/8kUk0\nuHcG186d0c+zn5dEnHHk+Ikb8WsYCAQCgUAgcM0EQfQUiaKIWq2Gcw5jDNQb/q/t2gRvsxZRZ328\nMXW9Hd2gpk3SNKWqKiITa/iAq3BFrqKp2SKJYpxDN6+DjjbDmwjJIpJjt2C7u9jOjpa7VSpkbGcb\nM7+CzQvo7WqyXK2JbW8itSamOU25cQmJIk1BK4txshyAmZolPnoL+QOf0PI+mGyso4Q8z0miGGxF\nbWVF+5kufIH0NT/EgZd+C+XpzyJxSnn2c0TTa8ixO1QUdjYw9RautzsRNTAeaiqLx3Eb55gyRmcF\ndbc0rCFrqgNjdFPdJSMzCXt7e8zKxLWgKsZlYDK635fjjcruKPoactG+DNPLxCJQ+J4nV016clyl\nEddT81TWYowhjoWYCuIYdq8QRYme1zs4YgyuzJHEhx8M97TkbsoLvlG5mkQqoHptpJVoOuFo2G7e\n5w1veANT6w+q/ui19VhFfzw/yRX52AmTeov/8M5380/+pzfhrp7Btde1zwrGj3Fe+EiSqmvZa/te\nt5quaf/wWfSzJqOhwYPOpH+qKmD6AJRDrm7vsjQzhTRm+Hf//jf4hz/wrRq40W9T1WaIqlwT/uJU\nnago0SQ9V7F27gyFhUS8I2UtR44dv8G/pYFAIBAIBAJfniCInipVQVQO/UY3pSwr4jgCDHlekCQJ\nTM3TyysaaYS4Sjemgw4kGVGc6sbVl9hJkvrmdi2lE2cpLMS1Fq7fJTl8Uoexdnex/S7xTbeRP3gX\nEie4sqAadFUU1dTlwURInFCVOZLVNGQhihisnSM+ejO234U4wZU5+epp0sPHcXs72GEfk+m8G/K+\nCoVWRupyitOfo3v+ArX5aczVC7giJ778GLJ4nJ0jX8dC74IKQmNw5++DmRWN5rYF5tCtupkflWOl\ndY3DHvo+Kl8652YPqbAcdDTJrtZC0jrNxHB2bY0HH3yQ7/7Ob/eR1JE6QaN+obSuZWsSQZLohr7e\n1Pv77bEIG5fbpRkwitJW4Zpn00QSEbmSysZEou81nQ1ozuuQ1rIPRa4zk+JMwytGbku/M0kSrAoV\nQFlT3+c41fPnfX1cWofaNHc/doHp6WlYWsJML2EvnSI6+Qrc+hkVdr6fSVqL/Jd3f5CiKPi57/PD\nV7vbSHN2HAzhhn39fhQSkdQRuy8gAbQfySfgqYjrQpLp+ZIUmT+qw1+nl/V1dLUva3Z2Foouf/gn\n71dnqLUAu+vQmNU/CnR29P0ocx/YUOGcdxexJFFMRUzkAyHWTj82iaQ3EdhKAxyOHH36f58DgUAg\nEAg8bwmC6Kmyr5TJVpbEDsFGkNa0R8hvpJMko5cXZM1FoqqclHWNorjLIU4M2BypgYtSfS6GMh8Q\nA9JsYQddxERUm5e132flOOkLbqdY+wIApjVHtXmJ+jd8J7sf/iOyg0e0DC5OqXxfEHFC7ciyBisM\nukQ3vYjk6C3kj35WQxX8zCLb7+rsn+llFRLdLezqAxr53ahharVxb0n++b9C0nuYtpZqZoHo0AvV\nmTh461gYVFNLRNvnx7NyAC3Nml5Wl6gxo4/NB1pCOHcIt3Y/dm+bqDGjjkZVcNPyLDcdfK1P4Mt0\nA+37cFy/o/08zkLmy8eqQgWF7+VCzGSjn2QTp8dZnw7nSKuSwlpKCxl+rVFC2TpAvHeVaFSK1pjR\naOtxYEE17geiKnDDjgqhgbpE4zQ60PPW/bymKObUqVO86EUvgmEFtWl1/no7GipR5khrQfuiWgt0\nOh1++uuP+lLMYiLyEu31kqaPP7dmfJ0BdYry/uOT8GBSZpf3teQzinX4a1rzoiqFos+eS2l2L+CW\nT3LbbbdBawHn0DCNYRcZbkxK/OKJuE/GiXYGiFVMWqtisLczCRrxPVYgrJ07Qz8vVWR5Tp48eU2/\nroFAIBAIBAJfiiCIniqu0o12nFFWkBRdbawvcy2F871DSRKTJL4ELmuqGzHs6gYwrfuBnn6TGmfY\nqiKKdF5MHMdaMgZInGLmlnx53A5u2Ke6egEzo8lx5aWzYC35Fz5HXEsx9SbFxTOaMHfgGLa7q4NY\nixzb6yANdZ7K7atES4cpVh/VFLtS+360hyfXzS0gi8cYfPw9pPOzFO1dorklvQ7Wkhx5IVV7EzOl\nToWs3KzOQZzhLj9GFMW4YR8Hmp5mtH/KWKulXs5CXFfnYtilTKeIF45iylz7h0bBDpF3dnwQQFGU\nJNbPgqq3vBjyw1cBpua1nGy0+W4tQmdD+3YyTduT1Acx+OdVjTmSCB9vPcVoiGkcp/qe+VIzacxq\nyZsYGHR0IKyPuXZDja92gw5Sa6mo8Y4goOEHUYxtb2A7X6AoCk6cOAHtM8ihI+Njjt53AKqSjY1N\nfvZnfxbOfEp7q7o7SKM1Se3DR5n7oAcZiQwv0jRiO5sMx/XvnxvsIlOL+lmzVgfj1luT2O7aNPUo\npf+n7+J3rzT5ue97rYqhKp9c61HZoS9fLCqrLmm2T5iN+r1iL5was7qutA6dDe3tKvvkRNRNBYIv\nv4tYW1vTcsRREISrOHLyRTfgFzsQCAQCgcDzjSCIngKPPfYYRGY8IyYuSnAZVZTinCM2/meJ3+T7\nsATSuv6lf9jVeGejUc/SmIGqoF9YoigiirRvxvpZNGIiirMPEc0t4/pdqu2rE2ExHODilOSml0C9\nRf65j+AqS7W9TrxyTMVTmWsP0aAL+QDTaGGa05jmNNZaP89oGZPViQ/eRHnlPDjL1fYeS4nfuOZ9\nKAtMrUkapyRHb8H2OlS+dM5MzWIO3qLBAQhubxu7sUp07HYVBDXdkEvmo7cHHYpT9xItrBC98BvG\nrom7+DDx9DJMzWuvk/UuT1KfpMVFMePE+KqY9CWN+onSml73vS19fuXLtoZdFT5T8wDac+R7cnRj\nXiPqbau4qM/oBnxUWjZKYOtuPW646iia2xU5koxcDvywVp9IMNjVZLkonqTX5X3M/AqYiB9/6/dw\n4eoW84duxV09Q3XhUaLDt+g5/GfpapnykY/cyQ987XHvTvkkwqw5SdAbzTnqt7W3pypUuIMGeMQp\nrrejrk4+0J8151V0jUrs8v4kcW6UQBfF2E+8i/rr/jZvHiRQB2stJkpVRInR0IbuNmQ6hDYxAE4/\no6Ngh9aCCqiReLWWKm1qWWJjllgcQ2fIxAc+1Jsq8vOclGo8T6qI6yTDLmufv1vF7NS8rtP/weHI\nLbffsN/9QCAQCAQCX32EOURPgSRJdLNtYtzGeeJYk7QirPYRjdK8+m0f/VynP8xxUYqrz2jvSVLX\n3qG0ppu/rEndVKSRoH8ahyxLsZcew8wuk33dtxOf+Brio7eQvvAO4gPHxqIGwHa2kPmjDL7xB6nd\n/vVECys6dBWo2pvj+UUjFyg+cIzi/KOY1iyu38V2d8m/cJ+KnuY0uIrFxUXtLbn8KHbrooYztGYZ\nXL4MJsJMzZK+8A7y0w/gylw3p61FwIEtMPMrWiI4SoSLYhU5zkJzjmhhhfzhT2uPit9Yy8JRdT+i\nVIViUteZPb2dceocYiiKkrIs90Vlp5Po517bl611/VDaEmetJtyNAhfyvrowfjgs1qpIyJpeDHVV\naInB7a5reMHu+qQPykdyy/Sy3mrN8QwqiVOk3prMqBqVs00t+vuqsaAyB27C7a7zvve9jwsbbX77\nT/6C6OVvRFqLDJZfxLv//C5+7bfejnOOv/WSxbED5qoSGYke0N6pYVdvzTld92gQrnfDAGRqcTJ7\nqDY97tUaD9X1Me+jssQyqrG+uY3UmyARR1sx2ALnHN1uV6+lF5sqdHfVWRNfLllVlERUEk+crGFX\ne4zSGtZaLRmNUxh2ySJ/bu8EOTGkaTJ+b6u0qW6s/0zJ1PzEBetu47pbrD1yH6uf/UvWHvw0a6cf\nY/Vzd92o/xQEAoFAIBD4KiA4RE+BWJxu2vc2kNo0RVmS+JkxWmaWTTZpYhiWVkUTvswoqfshntrg\nX6VNItD7TaSbyLKkqirqrTnK1UeJlg5TXjhFtb2uYQj5QP/inw+I5paw/S71O95AQ2Kq276NLO/Q\ne/9/1GGszZYmym1cwg16ANjONgDlpbPYXod46TBVe1NfoDHY+eP0u12mak2ktUh+70dUhNWb1A4d\nUgFQb1FdeJTaq78Pt3leBUyUaHmgteoIzS1rX8ywC62jgA6gdZcfozj9AK4sVCCOSq9qLehsIL1t\n32fSHm/gNYkPsCVJFNPp9Olay+J0ghODVOW4L8eN0s6cVRej1tJrPhIJ4sWTX89org+umvQV9ds+\nrW4iulx3S4VEVSCzK5M5P6MyyCgeu0pu2EWa84gYFWXd7bFQGAc7FH2QiJ/+ge/iPR+9hyiK+P3f\n/33e/OY30zAVb1oqSF73g7h8FxaOaAqen4nkOpta+lf64bbOAr6nyEdza7lepj1MZY5ECWXSUBez\n6E9eW2tBHR4xGoSxu44054ldxXIzhtu/BVzFQ6dXubl/hnjpBUxNNSGPxiVvNH3fme8bqqIUYwzW\nWiIslTNESV3LCsUg+YAkTkGgrBxxnOEiTWCsnKHo9ZnyLUajwbmR/+OD62yos+eDTRiqOBNfhidT\ni5qg19tBkpS1h+7V92PuEG7n8rin6+jLX3sd/osQCAQCgUDguUxwiJ4CpZNJKVLWRETIcy+EjC/P\nMpE6SCbGWhVEeZ7rZrHe0n+dBitEkf7VvDfQ0qLIlWRZqk6UtUQLKwzv179yS1qDskDSGskRbTR3\nRYHLB+QfeSdJZEjTFDe1QO1lutmTOB2X0Ll8QHnpDPnpB8he+Z0++KCi6mzrjKM4YXD+DNZaBoMB\nbnMVVw5JX3gHyYtfRXTi5SqqokQjoctCN+Rxiuu1cUmNqqqQAyeRxeNQlZQm0Vk5u1dwm2t0uz36\n00d0FtKoFwm0FM1ZnWPkRYO0FjWBz1mk1qSK0rET8vGPf1yTz1yl6X21lg8UsFBrIZmKOTdyloqh\nFyTl2Lkbs7cxKXHstaHWom/qY5dFppfHfT1ampbj9rbHoQWAPt9aFWR93z802J0MNwUkrauLljUn\noqgcQvsy3/fKW/iJb3s5P/TqF5M+fCdud53kjm8Z9/uIL49zw64Kb1dpUMNIFIwGrErkZ0ipCzMa\njitZkzybJu5cefwHWgzsXNbPbtbU1xklUJVc2dzR61b0qR77JHfddZe6Td0tH45Q0/c176ug6mx6\n9ybVXji0vK6fq3Ds9gcQpzqQN4oprdOERiOQ1igKdZ/iOGZqaooq9iWWo2G4o0G//R39HHjnz/nU\nPteYg6nF8WwqGrMqYKN4/B5qT1oCJmH1c3ex9vm7Wb33Y6w9ej9rj9z3pP5bEAgEAoFA4LlPEERP\ngaLQvhWJtUE9piJ1OeDGZVP0dmBPnY56XTd6xhjdoGXNSapWVUC/Q2EynHMURaHlRYiGMRRDqvYm\n8QEVM7bXofaNbwLQEjfA7m5qqdvMApQ5IiAC7uZXq5PkB7G6fhczrT0j5SBHlk6Qve6tpC96hfaR\nxAliImrHTpDYIYPBwP/FvcRML+CunsX1dkhveRmDuz9Iv7Dq2ngRIo0ZpMqJqwHkEzEVi0MWj+E2\nzsPeBo0rD9KIhfjQTZOwgcSXcY3K14y/NnGqG/y5w7jG3HiTDVCWJXfeeacfHpuoo+OHyUrNOydi\ntGemu+XT4OzkHCNhkWk5GHUvqKIYdtepl77nKEknvUGjhDRQp2YkaEZpc8aMB866qkSmFrVcsRyq\nmI21bFIDDAo9vxjd8I9dK4gWD+vnC/S1xZl3eGJNJuxsQJH7Uj8fkT6KMa8KLcecP6rr3yeckt1L\nKhz6HRUYVQGNWb1Wwy5u45z2rcUppDUtm/Rlf9GRF/OTP/QWNo9/I2vbPX2tTtcnsyu61pFrYwz0\nd5G8S5Ik1LOUqMpp1lIVpKXOVYqNIBqrOA5oGLmpo94jN7r23nF1nQ1k/ij5/X+FXT+jj3OVliv2\ntlXcjtLuYCJ+jZmUVjbn9GfDrr5Psb7Hrt9h9XN3sXr3h1j95IdZe/DTrP7Ve67tPxiBQCAQCASe\n1QRB9CRZO3eGNE11Az/asMbaazHahBVpSzeZ+QDXmJv0uwDgKIqSYdwcJ83hLIlY0jQlSWKqqqLf\n71MUpQ78LAvsng5ijWYWKE7dq30qaY1oYQVXVZipWcq1U/QrdLNpLVFkqL3qeygvnaX/6P1IkmL3\ndnD5gOzAQd3opnWi5ZuQKCI5rI5TfuGc9sqIQJxity5CVVJcPAPDLtHMEtGCboDj5SPqQPhhn+7K\nKQqT+aQ6FSOlEy2bmzuErNyMLB7TgZ0veR1Vx5eRDbvam9LZnJSqRYlunlMdgKv7Zl/iFiW85Xvf\nxBte/XX+ey8o+h11LWASSe03veN+IYl8RHY8EUdpbSJOomSygU7rSHNen594Z6G3M05tc90tnzYX\nqUsikQqEJFUnaBRr7exEuG2eHwcX2L0dKAY+PMGHD1SlijTQoIl+RwVOnKpwqc+OnajxcdO6bvZ9\n2IIblf1FCRQ59tIpLffzzo6ktUmpXXdr8gGPEk3eq1S02JEDs7WKK/q49TO8613v4sCFT0GvrZ+R\n5pymCmZNP1doCufAjYIfqkJLQaMUZ2Iti4tSXNocu2dFZRmajCRJKIpCXdNYRZRU+Vgg9/xcI9fZ\nIDlys/5++P4vZ/eJXed7woo+wwrvcg116C8+6Q/0/a1r4MnIVZLGjKYGJqmWDh66lbW1VdbOnlIX\n6aF7eeihh57af0ACgUAgEAg86wg9RE+BqqqInKaSubSJlEO9kBLjxJC4HPJSN1XOUhQFeZ7TaNQp\ny0pL4QAqDQBwnQ1k7hCJs+AykqQ2dotiwPZ2cVWl4Qe9XeKGRjmb1iy2s4NkNZytiBcOkpgKhn0N\nBqhKZOkE8Zv+PrWrp8gf+BiuKMhe91b9i7qzOqvowElSZ6kunQIgmpqCKCbLVPDlX7gPrCV9wW3s\n/fkfUb/9lQDULt6nm/BBB7KGCqCDt0Jlx70pbmuVvamjzKbohjmpU0Y1YiNUkiImwrU1oluy5niu\nEFEyma+T1ikLDQ9IksT3BlVQMYmPjhJ9ro/FJk6RpBinvY2Hkk4vjwexur1tDXEYBRMUQ90Yl8N9\nm+o+VWuZqByqFPNuhDTnx0ls4kMoRrN+cDpPiEIjqCVKAE2yc/3OeC2joIpRZLnUmiqOALu5RnTL\nq3Dn7oXmHM5VPpWwmvRBjYfaVvo6jYGe/1lVqutkDCQpZmYRWTju36vmpM9m2IV6S/uvxCDdbU2i\nq7dodwdMD67qa40z7cFZOMLb3nYHm5ubrOR9qqxFlHd1zpMxIDHgdJ5UlHhx5BBbEaGfi7xyiAiR\n6EcFYDAYYIwhjmMNFhml+gHEGcPhkAyo967qfc7qezkqlWxfVlGbzKhg2r6gJXJxRtbd8p+NKQ1e\n6HeQuUPjMAjX7/gEvrY6cPVp3OY5qM/qax8FPOxcRppzlPVZWnHMY489Rj0xDCsQEb/+KAyWDQQC\ngUDgOUYQRE+WQYe0OQc7mzA1j1SaHidVDrbUfLiq8CVcHVzaxFpLo9Gg3x+MS76qqsIYHdgp9ZZu\nxlqL2gQ+uzIZSjk1p+6PH64qaQ0xkabErT6KqTWpdncwZUEVpyT9jm5cs+Z4jowxMXLgJNnyCU3H\nK30vTdkdl6TJ7Arx7ArVuftIbnkF9NpEUQOGXeKlw9i9HYq1U9RufSm2u4tpzeGqCpmZn2zQQQMP\n8mlXBXkAACAASURBVK4Kgell3USKQBTRtxF1E4EtcdsXyRuLJCvHtKRvhHe3RoEIWpblJrOc9ouV\nOJrMpeH/Z+/dYy1L0/K+37fua699Obc6de/qnpru6R56BuYCHtsDNiFONMFOBoyDDMRRYvBEhEsS\n2YoiRf4v8h9BUYSMJU9AIbJQotiGYMk2Bl/CGIZhmBnm0vSV7uquOlV16tS57cva6/qtL3+837fW\naVtmegAHbO9XKnV11T5rr/WttXe9z/e8z/MwME2OxYlSAQzOIns9lybbaXLSibAjyuuZFbk5thH3\nAozO8R69JmDID2B1AqEwUGZ5jNq9YfN3mmGkzYsH8BMlwh6d3e9Hz8z6HDXZkzHE9RKVjOxYY4gp\nc9pHdwmvPYW5+2ULMNvhmTLR4Nhn3QlFExXIf5Npf3zHPqrt6wJYALavCXOSTiXYNpUco9YoAl9G\nydRoRmsUs2oh2U1t1f+5Ob1HqFv+9t/+Wf7i1YLRf/zDYgpS5xBNZI3dOGgnOrvOIIyPRT++7+Mr\nGYXzTUvVdnieJyCpzi1To4ZMqmJBbOw9N1qebcsCmsoTPZHLQXKar2xHAFC1IvfHZH6AObkn92N6\neWDFug6VbWMOX0NdeZqDkwU3olMBi54nI6crAVT15ApKKZqqYrVayWe60aRtLkG6uoXxNgevvSjn\nYe3dqXJuvOf9v5tvm01talOb2tSmNvX/Q20A0ddadSEjQuOdvnHXWhO4MM0w7ZtM0gmqKYmiiKZp\nyPOcyWQiGiSQ/JUoFSYnSoRRGG1BXdIZj6ZpiMO0t8muXvkiwZ6MqpUvfYEmL8nebbUQno+XZuJk\nZvQAEroOv10O5+9dyKyBnm1p4ylB4OM/9UH5+7bCMx6mqQn2b9C644Hoc6oCk4zwbP6LWRxR1w3h\n/D7N7AZReQbjPRQQBiHLWhPHvgC+eEK3dQ2vtdcN0sBfDAytyz4wtes6fGXNyF3mjht3syGouPVr\nij4wl7oQUOLG0ZKp/Kzy32aK0R+zrSzj0sl4VVsLkzLZE6OE/BRmVwT0gOhmlC/ATHlyfuMde165\nXNvYjs2lkyHENJ0IQGkrzOmhBNoGsejS2orwmQ8L+ME+H1WOWYo+SnmeaHxohY3SrWiZHLNV2Gt3\n7JHn0eLLB90aJcgamwvPhE/QVVA3MmIWZDx+/Jgbl+RZdIHDMkYYYqqcH/7E9/PKnbvc/vI/lvO/\n/C4A0Uc5LZfnAQq/rWhbn6CT9/YVUMzFNtwPiesFKkyEGVIxtLWc82hGsJ7LfWwKccsLYjF1MDL2\np7auYE7vCRuUbctazQ9RQG5CsiQmQ0YR1Wzf6sZkfI7xDloFeI9fpz18k8APuFbmcOVDAjDLZc9a\nnq4Ktrfls5ulCaiGGkjm9zBhCqsTuiLH6xrZCNAtnN1HWdv4g7tvibGIvQ8q2+bG0+/9Wr55NrWp\nTW1qU5va1L+m2gCir7Ume1RVTRxHNE2LZ6wNd23H1DxvYBgAdEOUpjRNw2g0oqoqgiAgNC2UlQCg\nFAEm67kAqiCizsUe2zSFAJ2mJrp5m+qt12iPD4mu3iQocghC/LGYJujlGaEfoEa7kgdjWSaTzlDL\nI/l9lVudjXU7s45qwfqRNOlda4NQY5IgQXUBnRbw4DQnzvJb1yWeazLjTPJixnuER6/AtfeKuD3O\nGNGRG48of8w63qZZrZjNZqxWK6aTHbrFCZ4baWtqYW6UJ+5y+Sm+BTCmLvsxKKAP7sR0GAPK5Qg5\n1kg34mbmwGrvKmeEvSuWNhR3sOvuM6SctkS3Vu/TSHPcWV2ObgZGKp1AaUGPG8Ga7PYaFoJYGmPr\noqeC2NpBp3gzAVu0lWiKFif418UZT433RPNSF4PGaLSFcgyf58mY3cXRryhFmU5AU7mAICZwWjXH\nrMEAmPDlWnRD0fnkRcfeXsyNG9ctk2SZs6aCVu6JaSvM8Vs8ePCQ93zzf0CLD298Fu/df4SmaYiS\nST/2qLXGDyICbZ39/JC2bfFH23RadG46yojqHDQUhERRRFAtobEsqbEjj1YHpupiMPerckimNC+I\nLTyOkcvPGNUPMDY811RrvMvvGmzTlYeqC3w/gOk+4bMfkfXIT9Evfgrv6m37LLSYqmB79yZq1RFF\nCVQdS+0zSXwBQ4B68oP4VU774j/HD2LRndXWOTHOMGcPxKDEDyTXanHEvd/8lAC8uhAQdXqAmuxy\n470f+n36strUpja1qU1talPvpDamCl9D3fvNT8H6XMbZ1nNCz7I8fiCNo+fjQlXdaJdJJhRFQV3X\n1HVNGIa9WYE0qXoIBbU7+1UjGURaa2mYtICBrpBxIG80on54D2+yBW1DdXyCv32pdzMzyxNp2mth\nTMSSeirjQXEmwKcuMOeHwjJY1sFpaUwpYKGzoabdSgJevcm2WG57fn8u+vHdwaq56waxuukwVY45\ne4CJMpIkoc4u0TQNs0BT1zWzyRhGM/Tj+9Isdh1qvG3zfEJhXxwzFabiBAbWXjoaXOP8gLIspRl2\no4J+MLiL+aGMxFWrISvKOqOtVtL09iL8IBaQ2oOjVhzdotRqoOLBRc0P32ap7Uw1lB1VdM15n1Fk\nR/OMbuVXUwwjgskUdfU9eHs3BLRakKb8ADXeRiUTy+5ZZsvzBl2UA0ggfx9nso7KH5jArhPLcste\nOVMHOs3RyRl5q0hp2JtmHB4eig230cKUrOX+C7AYxiP/5NN7/ORP/y38s7uoneuwOiaKQrQln9q2\nxaejbe05BzFgCJQRoGQ1RcYYAeLplNRU+Npa2F8MidUtjGbWtCETsBzEvSYrfPYjqJ0bkvuUbQtw\njjMBtdN91Ggq4NIBGHdM3WJs0C1GC4P1xPPghahr76W99rzozLrG6rEkQ2xcnwvjUy7FffHNL2BO\n7+FfvS3HXBzJfRvLqKHyLgTl+oG1UBf3RLV1Ra7fPucHB/c4OLjHm2++ycGbr/PWW2+94++oTW1q\nU5va1KY29bXXhiH6GkrZ7BhjTJ/z0rYa3dTEodVwKG9o4KKY9XpNkiR0XdebFPi+D85q2DXU+amE\nbUYZXSlaoyiKMOfHKN/HIAxNdHUQbHvjLfTj+2Tv+xD67DHeaCo70/mptWEOeltso1tp6gA12sJ0\nTR/eyXouTEOVY8ql/P/2NdI0waw9VBBCmqGihFd+6md5zye+GxWKtXX98udJJ9tWwO9jVqfyepvz\noqzGxTs/xN+9SRiG1E1D27ZEUUQ5vU6YTcUG2pfAWSjtgnvSuBotIbhOB2PDawlSfF1zfDZnNpth\ngoS2aQmCoB9roy7kvlhzBupicJQzHeMkHDRQDnB13aCFAWm+wYLMEmZXhrHDMBUNmbPGPr0njBD0\nbB9NgSlzMUyocrHxbivM+SPU1mV5/XRfLNOn+5aVyN+ekxTEqCa2hhESTEoYCfNULgFx+jN1N4wW\nphNhdgCiBB9FXioyOw42b32iCAleDYyYcZiO2WwGxo4P5mcCEC0DxXoObU395ksEl5/gL37sj/E3\n/u9/yH9xScYB4z/7VzDGoP2IAGHnAgVVo4mVRhvQ2oimaH0O6YSm6Qi8QMJdndOe6aBhGGkMun5d\n1PSyvGbxCLX/lL3PgawJyDpm27LOLpTWmS64/3d5Rhbk9GOQ4z0IY8qmIy3mBMVSNH5lLpsIJ/eG\nAF7LmKrxloAb3QhrCcICOrfAeCznlAiDqLIdzNkDiu0nidqWoOt623rSibCd5ZLAOM1VwMGrL1Co\nmNSXe7lcrnjuuef+1V9Wm9rUpja1qU1t6h3XhiH6Wso2OEopjDc0RHEsTa/LkTFOnqG83hwhSRLq\nusb3/R4LyRhUPTSBbY2qc1JPM5mM5bh2PEyfHOJPtkU/ASTv/yjeZAsVJ3Src/ztSyjfR99/pQ/9\nNHXZMzU4ANR1mJUVlF+wWzbr84GZiBJr0SyZLt54C1MVdPmCd3/Xn0AFIfrscf+zXb7ANJWwZ5du\nCRtTF/Ke1o1NjWbiNqZrIl8xsrqmNApoD+9KiKrVBakoQU33e/tnU+XCIF0o3/esBitha2uLuq5R\njTiVKZdzozyrZQnebmvtTBsc8xFEg6W2bgSs6FaaYN2IDkh58nOjmQAsl53kQkahD/9UjjEEm01k\nAZryBuamymWszpk+WODXW4U7Jscdu1xIQ65bzPzhAKSNBNi6sTw5j1DOzQIflMfh4SNoK9HTdC1r\nlTCLFKmp0MnMgreYNRFp6A3nkU5geSzsim5Ql56CICL+pj+Nt3cDooQf/I8+wk89ylg/OKL7zM/i\nP3oV37RoPNpOPgxxKA6MxhiiKML3Pc5aMRhJQwnL7UFglMoz5LKZwri3GFezq9Bp2ZQY7w0PRBCj\n9m7Z4Ntd0dJd/LudG3Jv0ol8hvduya8rT6NnV2knl2G8R+0ntPikXSHuh20ln5eukYBfOzaprGmI\n2r4mn6s4G7KYQF5nR0mpVsLEdm0P8NTeE8RxTFAter2Ynl6hqmpU12JWx70ODt1CW5F2wvYZI1lN\nb7zxBgevfJmDu29x8NqLHHzl19nUpja1qU1talNfe20Yoq+hjG7h4AXCm++XRrOt8atcLJGt1kSl\nE1RTyQ6055EmE8xaxmFSgLyRxi8Rq2aaGsolXZnjTXelYVqeSONtmSb/5nP4V56UvysGgwSV3SR+\n9pt77QFh2mfPNE1D2FbSxPU6l6W8Z7o1hIKmE3nN8qTPEmKdD5kyICNzno8/20W9+/108xPC67fx\nsilGawFrl28KQ6Fb2ZmPUth7CnNyl+7Bq3jXnoHVsQC6cilAouswTSGZRhcMFUyxFJYjmaKMFnvy\nrhP4rhvQwQVzAJ+u68iyDDD4XSeNNErGEa1THatT2LpineZk7AoHsroOsMCjEdZHmBq7Ro3NF4KB\nGdANGBv0qSVXyjeKwJkyuIwfFyzrjCDGe7S6I6hySCaoKIW9W3KubS0W22cP5D23rvSueWY9R82u\nCEhNt2QEyz1zDjRcOH+sMxozGce6sj22TIuwXaMghLaDeIIPclzlcXZ2xmgSwPSydWWz4KRY2lDb\nFsZ7ontJJvJc7dzkh/5sxv/+C5/mP5/tUmw/SXr4Kr4N03WgTikIdInxM4qiYDKZiEOcbiCMhdWp\ncvscN4ODXnMByHoe67IiTVNraz7GZXuFfiAjiUev99lSplwI+EwnPTA2Zw9650EVxARxJp+3Yoms\njgTAqt0bmNXZwKzGGWZ5IqCwXFywfA/EQCNMUc6wI5nIddsRUjW+cG1RAlUuZiFudFYLaxr7YlWv\nQpuZlU7EHn68PTxTJ3dJdp9A1Xm/JjrK8MOYg1dfsMYhHjoWUO7TcePWU7+Lb7xNbWpTm9rUpv7d\nKGWM+eqv+gOs69ev/6E5wTf+1l+jPXmIqUqKx8IudLpjfOsayvPB86lPjgmzlOXdR0yfeZc0YOsl\n6Td/h4CW6WXJtvEjGZ1zTEBbyXjb1hVhAtZzccVaHkuzpvxh9MqJzI2Wpt6GidZ1jTGmZ6JGvs0C\nevR6L/inqW3Y6LaMEekWtX1NAFyVD45rQWRNFhoZy7IGCc0Lv4rpJAg2uP0Bqs/+Q4L963jTXbx3\nfejCz8cURSGjf+sTsaTeuiINXJVjFmLy0GtCxjsQRNJwRokYKPgBRKmMatWFWFxX+cAMOLtpx7R1\nnQS+om0DrzGTfdFQWcCgVSAaFeco51mwZQ0IGM3k2K75dEyJbTx77U1pd/Zd42ozhxyDQNfKKF25\nlGa1Eve3QkuWUtd1RJ4ZRixBQKluMIsjykvPkFbng/bIOhCaozsyWuWHmHIhY4TWYAEXEGut26ly\nATbGoFYnMNkT7Y5v2aXaBsLWxcBE6YbzLibLMhk9bEphEm3T3lu6O01P19EEKWFXYc4e8Mmf/2d8\n4zd+I8899xypqax2Kx/WOZ3K+dS5rHEQDWYPbSXPeZwNuijPG8bRrJNe6yf4vk9d1xRFQdd1TKdy\n3NC0dG98juatl/EvXcffvixrsX0dc/iqHNMaPCiXndTZ9852rKvfSl6TTGTd61LWOs5kI8MPBFjb\nsNjexMNpx3QjduUgOWNVLvcsiIeg3kYAWROkhOV8sJmP0gEAwnB+F8xazMNXULtPDFo33bJuDev1\nmr29Xeq6IWrXMmIXR+B5LJcrQJhqzxN29cYTt36fvhk3talNbWpTm/rDW/fv31df7TWbkbmvoYo3\nXuH8xdd5/Juv8ehzr3L85dfRZU356BjTacrDQ44+/woPf+0Fuqbl+PNfwayX6LISwFMsAQNRKnkr\nnaY1yjY2oTSedWGtsy9k69iGyKzPoa3EkWp9Ln/eVAKaMES6RGstO8++34/Oke3QPXxd/n8i41+m\nraWZmlhWKpnIiJ3VQZn1QsIu13NMuUQf35ed9mSEKSQrxxzfJXrX19Ee3Zef9WyjCBhjSNOUKPAl\nr2n7Wg8cTJX3xgdqsieMUS2NZw+QJrvSkMYZKojkddZ8wDh3t0bGv1xjvW4NBwcHmAcvD8dZnQzG\nBZ3k3dBeCGC1wInR1r+g2YkGsGLNMfrG3RoXEKZWgxILQDk5EKZlfihjVUpBaoNLbXOd0qCUEjDk\nzB9QPTgx1qLbGDPcI2fgsDodTCeCaDBVcBbd1uShd8eb7gMGtT7D1AXGGDEyyM8G3ZQX9GDncFlT\nxVvM9JKwnKOWRzKeF9jxOxBw7Ebbgrhv6M3JAe2dr/CJ7/tzfPnLX6brRGNlTg8GwGA6OR9ni64b\nMQBx+iQXLutGN63RxeHpfGDAgKA478cjtyYZk8mEoGsIPcTMYHqJ4PptsQMfb8van90fzDB6DZAF\nXY6NbQqbSyVsoDl5S84vlYyovhzT2lRybU01gCGwAblz0ZNFiTz77j2cqYnpoCnEbdIPZMPBD8Tu\nPT+T6+3aC1lT3TBemc4sW9cIO2kkw0lrzdHRYzzPo43GpNEw1gswmUyGUGjT8dZbb3Hv3j3u3bvH\npz/9aV599dXf2xfkpja1qU1talP/htaGIXqH9bn/+uMo3yPeGrN48yHrQ9Hf7L3/Np3uCLOEJi/p\n6pZ6mRNNMrwoIEgijO4YP/cc0bu/QVgOGJpp11D5oYz4PHhFmt7pZdmpdm5x1hDAnN5DXXoKc3Ig\nYu+uo51ekR36KBNnOqUoioJxu5TmSkmTLFoiYWi6YimW2X4gDdnZoTVDsGNrVYHKtvpGrz14leDG\nMxKW+egu3eKU4OqTeNefpXnxVwlvPC2NnwUa+uAlvJ1rcq2ONdItJj+XENJkCuXCgjuxG1dhJLvp\nyXRwjHNgxmpIgME5bTQTINFW/OKvfJbf/u3fBuDatWt8/E9/jOLv/XWid78f//l/j7rVRKbGRJlo\nfsqlHFP51s56ZpkC20A6AwbPG7Q47vVuN79cDtdXF/2IlyntiJZjm2prEqEbPvUbX+RbvuWb0XoI\nIzXGiK7MakXM8oRmepUI3Y8t4sCRY5OcQ5pjidzahKmwV8kUEyZyrRfHzi7oneQZtOxLXQwBq00h\nbGUY9Rqw/liLo37UcN0aYSEdCG4rWJ2hrjzNZ770In/k9r5ov9LZcA6WzXswL7l//z5PPPEE+75l\noZy+ZrI36G/iTN7T/VmYWkA67oNfAXmNJ7lZjpFSI9FGmYevDPdCC+BX29cGhtGxNuO9tx1HWUtu\nZx/v7Or7TCsX6uuH6NG2rF1vthH399xYIwUZCw17reHbGM4L9u79WjnAWy7l+h2TVeUSCnz5thwv\niKmqiuPjY8IwZDweE0Uy/OfcKquqYjQaWQ2jwvcHrWOe5xhjiGMxjNFas1qtCIKAJEl45plnvsq3\n46Y2talNbWpTf3jrnTBEGw3ROywvCtBlzer+Y4qjc/wkol4UHP3ma3i+R7IzRTctQRLR5CW6lMba\nCwP8JML81m+xe/v9MN1nvS6Ioxh/fQajWJonp1eJUhkX6ywLgeobVrOeo3ZvQV1KM6Q8VCm7+Xq0\nja+QUSxfkSQJqFgc5e6/KDGczlQgSvFsc62sDbTavSmNod2RVkklpgZ2F12FEd38CG+8TXDr62jv\nvYz/7EdlBGyyhT55QLD/lJgxVDneeLs3U+gevYG69CRUxyKIXy8lZHN2FT3axqtLab67rheou1Gg\nSkMcp70hAyBGEetz0RnpFnTDnTt3enbs+PgY89YXCa7fpn10F2/yRcLpvjTJYdpnDrV+QqBtdpFu\nxSjDNf4Yanw8PHH7SqyturPtjpIeLJrjtySEd7wDjQTX9jbYzs7Z1rd8+P2wnuOlM5QSJo2Tu7Bj\ngXKxRPkB4fKRsBuuWbYBthRLASSBnIsabWGO30JtXxddjzOIQJzKHFuBH0jDHWd98KwbB8No7s1r\nbu5b4Orsz+uyH6dTvgWFrkn3PEbtOURbAjbaunfQM/NDPvShD/Hpz36WP3rpEO/m81DlfPHNR+zt\n7XFdLdjeeYqqqlitVrx49y7PP/88e8UD0W7ZtXvz6Jxb5nUZ8UQ0fEp5A1NSLAegbINgVTKlnV0l\nqFcyllkfDmN57vyd4cFoSz5bFpyTnwnwaCu6bA+/LcRa2/OG/Kv1fAAmAKFYf/vWTbA3tLDaMpQv\nRhCeN7yvzZOidmC1Gda1a4X9Vf5g1uEYunrZa58c40ng0bbirLi/vy/MHPSAZpzGrJqG8XjcP4O+\ngrbVBJ7i9HzOzs4O5+fnPXgCrPGFjCW+/PLLrNeSi+bcIbe2tnjyySd/V9+lm9rUpja1qU39YasN\nIHqH5cBQV7cku1OiaQbXYXn3Ebtf9xTrx2dE0xGLNw9pipYoi4i3xkTTjGR3SleLJsEcvsZo/3a/\ni23OD8UG+OyBWAiXC9S199LojrCtZRc6EJctaXbjQVcC/QiXr4C6JAoi8qIUN7FsZ9hdLhf2Qlqx\nf/ZkZMhU3rAb75go625mmsIGTJZ0yzOC0QR9+pBufkJw+Qm0H9E1EtLq3XgOc3RH3mNkA2pXZ5gg\nwrv8LgmnLJeYbo5ZL/GnezCayU618nptigoHMwcTJjRNPoyYgehysCyS6cS9C2nU3K+rV6+irr4H\ndetDxNWC9pXP4E/2YPuGNNEWZAShgs63WhVfQKjVbLStkXE/5+ZWl7Ir71iD9ZwmzAgzGenrR/jc\nOJnTFLnGuy7AAx1kskufn0I6I18XZLtPoLuOroNwvCNubm6kzTJ6WN0QYSz3Mkz7EFq1d0tGzmxO\nkBrNBnZtsjuwXtayW9ghy2D4LfgJN3fj/jkwuoXVWQ+4aCtZa5v540CVqUs4sSL+6f6QGaU8/Du/\nwYc//GF+4pOf5KmnThmNRrz88ss0TcNkMiFJvsj9+/e5desWzz33HGdnZ2w99V4AwvyYX33xTf74\nB76O7q4YO5i6GEYBlQe+ZWocMIkzCGQULmhrMaywxhVuBNW0DSq5MDLp2Lf1ueiz5g/pRtssi5at\nSSefzZFlSfMzub9O5wOwfU2cIR24tJlGGLHQNpN91PkDq4PyBqtvQI0D2eRo6/66TH4kTJJuUbO9\n4b4ZDcVc9INdg1K+mF10dtyuaem6Tizt61rc64JAwI0fEMeglBJHuzClaIQ5atuWsiw5Pj4mSRIW\niwVhGBKGIVVV9WxTVVXs71+iKEratmU8HlMUBW+88QaRr1iuSzHIyE+58Z73/96+aDe1qU1talOb\n+gOoDSD6GipIIrzJiOp8RXW+QvkeXhigm5aubsnvH+OFAekoIcwSlO9htKZerAmzhO78UMbISrvL\nXyyk2SsX0vDaMRnz5hcIbzw/CP+dK5ofDG5p1n3MNbltZwjsbnmWJrBaYe6/iLrytICAupRG8uIo\nmHXZMrqV82gKOxbWyYhdXUpga5wRft1HQTd4Zw/xkoxuvcR/9Boj08GlJwAw1Vq0P7qFIEPtP4Up\nc2G2LIjzkgy9Xg5C/vNDKJeDq5vqgFZYgXJJFCVEkdNvKFRdSINal1aThQAIpQiCAM/zePToET/z\nc3+fD37wgzzzzDPosyNUlOBHiYBEp9spBstjMBjlUVc1USQOeI4RavEJjBaTi0LcBYkzPDw5jgMJ\nxbIHKQQxFFYs31YyctaUGGMoioIgmtBWNePxmLqWxrdpGoLRCOUFA0h1TbFuh3ErP7TNcDronCwA\nU+nkwihgLYyGY0hG6QDwnBlAnHG2WLEd2IBg19CnE9BRf/6kM2Fn+tGzrncvbHaeJMofC0DoWszq\nFO/6s8Q+/ND3fByA7v7LfPR9O4TPfhNqvId58BLM/jjUBX/97/4S3/d938dqtcIYw2c/+yU++MEP\nwmg2MJP2GSO1lu6tNWxwtvVunNCG43J+KM9ucdrfGzWaiAMiDHoilz1VLlDJFL8tSNN0YN3mD4VV\nTCdvM4BYap+JtiNvLqA3zgTQrM/F/a/OBw1anaN2bsDiCDO7IpsSoy2UHX8rZzdJ44xVFzDevy06\nNHcfR1uwPJZ7Yh3kBrfDFqVUb+8PMJ/PGY1GAui7jjAM0LpDJzPLAOmeVUpTYV/LUp7N8XiM1pow\nDPF9nzzPmU6nrNfF214fxzG+aaEuSdMRLB71obLu2a2qmrjNqYKM27dv/359DW9qU5va1KY29fte\nG1OFd1j1IkfXLWEmo0t+EqHLmmg6AqA8WRBO5Pej/S3S/W3KkwVeGBJmCfnhCV6cij5iNKOqKhHq\nAyrbkT83nVj6jmaY+UNp+J0tr7HOaaHdya/yIUfH8wjWIk6nLkQHEcTCFFi9RLe+oHcB20TbZttq\ndwhT+bO2xqzO6B68Kue0dQV2n4Agxrv19XhX3o1/+Uk5vrHW1vmphIyCNOfl0oaRFqITKnMBZ9k2\n/qUbAvwe2XGoS0+JI5xjRdSwix/5SprcrhMAA/J7t7tvGaLJZEJd13ieR9d1zOdziqLg1VdfJf7G\nj1F84VOUn/o7mLMHmMPX4PyhrJdtiI0RW2jP81CmG5zYgljMEboO40eQbfeifPcaY+QXTWGZIgs4\n7f2lWIpbG7Izn6byDEVR1I8gNU2DMYY8z/uxNRZH1pltIhbKuhnG3Vzoa22DdWdX5BlS3qB1Nvxs\nqwAAIABJREFUuTB6KHq1oGcGeyC4nrOdJYOLWxgLqHUi/ioXEFnlNpSYt2mi1HSfaH0C2Y48z9k2\navu66IaqXHKBkgzTacJrTzEPxdmtPbwrZhnphB/8tvfx0z/903iex0/91E9xeHjYi/+bmx/Ay2YD\nM6UbYVsWR4P2xzn/ocSkBCVGHjZ0tX/OEVMIYX0ujLX1phSBsKyL+wI+8lMJWAWx33Y5T8mEia/F\nzMTlHdUFZnEk4bDOuEG3si5VLmOUNgxYzQ8xZ/fltUaj9m/L9eqWLD/s3R5NY23x51ZD5dwfYdDW\nIexP13U0TUNZlkynUzleW6MN5Pka3/eoqqp35fN9nyRJCIKAruswxpBlGcYYkiQhDENGoxFbW1ss\nFgu01jQ2UFkpJeYcdlMjWJ/0I4s4c4wqZ7lcQjojjuMhK+mF3+Dg4ICDN19nU5va1KY2tak/LLUB\nRO+gXv1ffoiuETBUL9ZEkxG6rEl2pgBU50uU7zHa30b5Hk1e0uYF0WSEFwU0eSnNWRD1uqBYF6im\npE23Btcru5uskolYMHcNJj+jDkboIB0aLjd6M92XnJlsWxo8pzlwu8VOl2A6vK1L6JMHmMVju9st\nltPGWXG7Eb7F496BzLQWdNiGfhWJG55ZHKFGM/TdF+gWJ5jFsYwmnT8adu4TyT1Sl57CnN2XkaWH\nr0CV89Jf/auU0+u9iL4fWTp7KADLASPXzNeFsC3G2mObjua3fqXXU5S/+vM8/fTTfXPneR5N0/D5\nz3+etm159XBOdPM2pm0wp/dRV56h/tI/HXKIPB/VtdR1g+d5VE1LVdW9nsI37RC06nkWmKlelK7q\nHLU+E1H+xWwjmwk1gBExUahrYbSqqkIpxfn5OZ7nEYahiOGXx3Ica4zgDBhMZNfLvUcl1tVGt4Pp\ng2vG81NZq2I5MGltJQ59bk2rnNxLpTl3f9ZUfQgrtc1CamyoaJSIm5kfyfHdeWxdGTROIL/3fMkg\nihJoKoJb74Ota8yaU8z5IeE3fJus6ewK/rX38N/+4A/wyU9+kqIoCMOQ7e0tqHIiX9E+eEMAifJ7\nB7je+tutLXB6etpraOi63kxEjbflvdItuU4vkM9iIZocp9kx63k/gtl/drId0Ye5UdIwHtib8Y68\nXjfyubS22O1od3CHM51kFNWF3I/pvow5bl0RkKRb8HyCeiVjsVtX5P6lEzF+AHlvdy7KH8YGjYa6\n6IF5Xcszq+pcWMcgwjetPDtG9IWj0Yj1et0HRcdxzHq9Jk1T2rbtmaY0TQnDkKIomE6nxHFMlrjN\nA9Nfax8MXJestXVcbAryVsxC8DzZfLCZZ85pEOVxcHBPgNIrX+7B0qY2talNbWpTfxC1AUTvoFQy\notMd+eEpbVlTL2UEzosCrn/Pf0Z2ZZfybE1bVkR2pC7IUqLpiPJkzvLuI6rz1WA1bAwkE9atjE+d\nLuzuu2N+HGtSl7A+JyrPJMcm2+nNFVC+NO2OnVBeb+1s3LgVCBuyOqU7PcRoLUyRH6B2bqKSiTAL\nrvnqOtRoKk1bnOHfep80c7qh/rWfZVyf073xOQEvXUdX5Hg711A71+W93Fies3Uul5iHL4thQ34q\n7+GHVIuan/zJn0QfvNSPbbE+R423hkYL5PrtcagLCdT0Q5ov/RPC930LarqPilLS/+RH+Mj7n+X6\n9et9xk8YSjjtZz7zGZ558ib1vdclWHbnurAyH/1Ph/fptDjj2YwepRRxHNvm0EgD3XUictdt7zSm\nlBJgYEfogIGF8W3TvTqV++KH4AU9yHK78lprxuMxbdtKZhO6Z0JMmPRNqjL2/d0IpScGCMZatfca\nMOs+J0yKjFupdGLd+Gqx0ra5TgBZLNbnyg/6e6EmewIctq72ga0kcoy2bblz5w5kO6itK5hURui0\nlvNrW03TtINz3noO4x2Y7KF2b4hObLwDYUqtIrQBtq7SeDE/9EM/RJqmfOd3fif37z/g177wFaq2\nQ4UR9UufGRghdx9cjbZowozZbDbcM7BaO1+YHau7UZ5kOpn1XHK4LBNm6gKVbctrrI6HxLJyQSyb\nDp2YfOAHAjTnRzJqapkgghg12yfomt5Sve6U/F22I58r62iog7QfYdXa3nM35qhbis4XQ4e1Da7t\nOgHKTgsoD1FvzR2G4gi3M5WRzcjUtJ2hMR5pKuAniiKMMUynUwFHiYAhl1/mjBe6rkNrTV3XpGmK\nb1qi8qx/2zzPMWEyZKApT+zlfZ+6U8IMA9vb1pgjzuT167lcZ34mroa6k/vvRoK3rnDw+ssCkL7y\n69z73D/l3m9+6nfxjb2pTW1qU5va1NdWGw3ROygvTtFljWd3YuOtMav7JzRFy9XlGdkz72Hr/mPq\nxRpd1vhJxNlLbzF5Yp+ubvGjgPTSNugGHaTUZUnqQxzHPaNRa0OU7UgeSbEctC5tJQDIjS+BBJjW\nBXEQQWmF8IsjaXi3rwnjY0XwcgEe3tY+pr2PN5pgzg6l+bIgxaznfXCkmu4LAzTZ653JzPkh3mSb\n7uFrciw7ihU+/y1ipDBNUVGKd/kpmwkUY1anqG3ROpnRNiTSuKvRjOWDJVmW0c1PBFAkE2EAkukw\n0ucswiPRvZgyR012aV/7LMG7PyCC992bsutsNSTf9fE/A0HML/zCL/Daa68RRRHPPfccJkyol2uC\nfEHzW7+Cv3sVDfi33i+Nqw1cTXVL22rJcAIZc/OD4Zw60ado3eG7xjux769tE5zPByOE6b6AiqW1\nbTaaNLbXYySgVZzm5FlYrVakaUpsR7iUrglD66jmcm6qfDBKcDk6nRX7u2wa11wba9vtB5h0JmCo\nFhMM0xR0k338xeEw2hclvQ25muxZfVo0jKTphgB49/X9no1UdQ7xGN+0aAICZSCwXyvrueh4/AjV\n2ZG20W5v/Rxh0Lrrx7CSk9/mr/x3/w1/42/+b3zv934vV69epW1blk/+Ufb29iRfKkrl/K1eq0tm\nmLYlbC8wO5Y563VSYEFhIeClWA6MWjoRq/Akk8+Zc9TLdgbnxyqX+5jOiM4eiItd4KOKpXxebUaR\nijPM2X3RHHkeJFOapiPiQnBuJ2DOt/eFVkKU29bQxVOiakGjAlKvwphO7sdkR67Dff6jZNCTdS00\nBTpI5TgagiDA+BE+Am6ocpQaXOPqumY2m9E0Dc0FB7r1es0sjTBewnq9RmvNbDYjrCUMuahqwjAk\nSZKeifOdwYsf0lY5SZKgxttk8UjAkNWgqabs11+F4oRYVZWM6gWWddu+3rseMtkTZqypOHjpiyyJ\nmc/nvU39Rz7ykd+X7/ZNbWpTm9rUpmDDEL2jUqMJYZYwurIDQL1cM9qfMb46482/9X/hX7ouZgq7\nU4zu6BpxolsfneOnEcnujPJkjlkv8B69RvLwBczjO3inbxEsDhkVx4SHL4mmZj2nOz/CnNyTndTE\njretz0VvcOUZ1OXbAmD8kLVKOF8VqMvvRl15mtyEtNMrzPNSxm/8QLRA2Q4qSlCTXQEXW1dQsyvC\nfEz35UK7ZgA0xRKzOKLWBhWlNAe/Dc/9CbzLt2le/JXe+powkpwWZ71sdS7e9Welmes6zCu/Aoht\nsmkrrn3jTf7L7/44+uzxMErm8pls0Klp6mEHWjcyXtR1+De/DnNyn+atl/qwUHFOC4VVOXyV//D5\n63zsYx+jbVtefvll3njjDdT3/A/EH/w2Vi98Cf34voCh0awfj5PjRASeEkBULCQXyguk6QR5Py1M\njuimzmTXuxXdVa8nsdcqu/fWctvZRAOcH/aWyqtVTlmW1HUtzFS9ZF7UHC/y/tppKjtaZUfinLao\nk5E8tf/uAbSF6aB16breWlvND4cHOoxR4z1pSJfHmPxscEBbnw8mDUYPxh1+IBohF0RrR8VkhKvp\n74XGBglbEK/G26g6Z1VUgOkDRJumEWDp+/i+T7B8BHVJ87m/z1/6Y+/iZ37mZ3hyf4tMNcxmM9br\nNeVnfwHW53KuUYoab2OMEev00FqKr44HdsetQ1sLaxHEfaiuunx7eO77z/msd+gzy2MBO0HUB+UC\ndFvXRO91fFdGQoMYVtZ9ENEoyW98zPwhWXOB0fFD+0vYuFpZTVqnCYpzcVL0PAF3VS6fTwd6l8cC\nhOw978FeKt8DXdeh1mcCSNfnva7I8zxaP5FNF6uxcyOl8oh0xHFM27bCVHli411VlRxTKVlLI8fy\nfR9jjPxeievj+TJnvV6TZTbHSvlo3dEo+xz5gZxvGAvIiTMIIkajEVnoDUYRy+PhGe468AIxeokz\nuq4jSRKiKGJ/f5+DN1/n4JUvc+9z/5TXX399o0va1KY2talN/Z5qE8z6DurNv/dJlp/9FNlz7+P+\nz/8DmlxE5en+Fq3VB8XbE3TdUJ4sMF3H9MmrLN58iNEdfhKR7k65/F1/XsJQlTeEejqhuLUKdoGf\npqkxncaLU2l6nDtcW9Fdfx7f92hbTVmWfcBnkiS20ZQmPFkfS7M23Zd8o0evC5DRGrV7U8aHkglm\ndSxC+LoYQk8BU+W0O7cI5g/4f57/dj7+8CtwegDFuXWFa6Xxt/bGFOdDRowXWg2NbRSnwiqY+VF/\n3SrJhl37xREEEWr3puz+W12RsgyOqUt5TSJOYb3I3jXyoxnm8R1huB6/CV7AJ3/xc9y6dYvHjx/j\neR7f++e+k4P/6Ue48d//z3JecUbb6n5EyBjDKPLFVQ49XEtdvO3eEKZ9gKY5fE3AwHhbwGWU9vqs\n/mcsoJCFcEGwW2itOT097U0Vtre3Ra8UxJydnYnZgWUJXVaSY2pc4C5dA14oawlyLq7BdJoykHNq\nhntLMpH19ANh5lwgaJgOIawuDFZ5NLojCAJpkJ2+qG/uxbXPGDOwarodzj1M0VbD4o6htcbPjyHb\nQSPNtRuNJBRW8sf/zi/xoz/6I7Cec1p2pGkK/+hvknz9N6P2bkGcUeOLmxr01tc98HGhxy4s1znM\nXQjjNauzPgjW1IXojVxWlbP5zk+tc2BErSKiZiVaq6YQNjbOBotysKHC48ES3AUL61ae68meAKK6\nHsJ3w1jGK+MMk58NYM3owWnQbQC47w2Qe7Y8Rk+vAODTYbwAVS4xyUTGFrtOgok9g1ZBD37KsmS9\nXvfujFmWkXmayos5OTlhb28PrXU/aucYpiiK6LrOjqYGNE1LGDpnRLlurQLKshRdnLvGi6OlMGRI\nBVEPoPtnr1z2G0GrYNKfr9aaa9tDphJAG47I87zXRzmnvCjwoZhvrMA3talNberf8Xonwawbhuir\n1Kf/wp+iyxfkDyV759q3/ynirTFeGLB+eEqnO6LpCC8MKE8WBElEsjtlefcR28/cxAsDqvMV9WJ9\nIa+mGMBClWPWCxmD8gMrSA9QYYQKIvT8RAwFQJpsz8Nfn6F1R1mWsrseBKSpNBLOgrdtW2GIbP5J\n/YVfpH18ny5foELZ1cYPZFwuiDFHd8S0oVyKvqIpUFEqrmfAx3/t/0Atj/pxF3QrP5tO5H06CbhU\nkz2xAh5vCwu1fU123a1TXG8L3TWY+RGms6LzyW7vkqb8QMbhYMh8Ud6gf3IBow6I+YE4rVntk7ry\nNOrK03z4wx/m9ddfR2vNt37rt9L85j/ixl/+a3aHWsbAyrKkaZpecI4XCBjyAsAMYaY2dLONpz2Y\nouusq5odUwziQezeSWNKEA3sDYgGJM4gP8XXNaPRiCRJ2NvbxTctpwvZbQ/DgUl4WxMZpT0Tp3Zv\nSMCtH/S6DadBobHW1E5r48BQ10GY8uj4VAwBnDuYkWsBUMV8MObwQ9rOEIYhbdu+PfvH6N4IpGfC\n3DiXZTYaTyzhe7bCMREgwOSCWx+jmYCQOKP45z/Hj3zHn+QnfuJvYBZH7AQNRVGQftv3oW59A0z2\nWLeGSJdij14u5X2d82F3AQza9RfXxlh0V9ZcQjn2YrJnxwRLmB9izh5QFCVF3bIOJv3aRYHfs0Zq\n99awTp4n1z6aQSw5PXjWJt+G2prFkbC6lVyLUurtjpHpBB1lqL0nLLhrZOxwfS6bIp43gCNnfHIu\nI4++EjDkbLjzzhcWyD0LQKXp17ppmp4xunTpEru7u2RZ1ht/uNc4TV7XdSwWC8qypCgKAbCIdiz0\nvf46iqIgr1rquu61fIXLJdbN4MDogn4dyKsL8kbex1mYm+Ux7fhSn43UPzcICDorhe3zfb9nvNI0\n5eTkhPl8TqM7SGeiS3rrDm+88QYHb93h4OCATW1qU5va1KYu1kZD9FXKCwPMeokua7rVObQNfhLh\nRQKA/DBgfXTO7vNPcfPP/Pucf+krLO8+Qpc18zsP6ZoWXXfoxjamjjWAYecYbEOxhjARRqTRqDjF\nnDzsGzqVTDCt2AUbY3qrZmOkYVVm2LENggD9yq/iTXfp5kf4u1fwZvuY/FzGjVyeTLnEWE2QilJM\nW0kWkG4xXUfrW5bEMi+LvWchSZjW1mq3qcTEwZPxLnNyrx/rMcVS9B5O7xLEIqoHGw6aDuNXtjlG\neda1qni74xzgXbktOo26GIJLXYisDXbtx5KqnA9eSfn6T3wC9eI/wx/78N6PDqyFksZ2PB6T57m4\nu/VvZMfk2gv3x7IAgW6kaXbgtQwkXHO8PdzT6WXJmKpzaViDWNg4B6JK6/xW5sSzqyLCtywIiGhd\nKcU48oU90bV1IgwFeFg9zPn5nFldiCnCRXc0o4dz9ANhQdLJEBprNPvlA9T19/aMQWyNApogJRyJ\nY9y6NQRI01xVFXHgQV0NAM3dg6bARJmwES6LCcQ9zT27CtAtnmOZ6oImmREixhRmeSy27HZEb/Qd\nPwrAD/zAc/yvP/ET/OjHPszOs98sjmV2jaLI5gJZNtFptVo/IYh9WYMwFpdD3QqrBPLcjXeEPRpt\nWbv0VW9rn0dbRON9fGOoqkqYqWAkgMwG9xJn0tB3nd0kmIHyaY0i6DRpFAzOiG3Va+CIM0bLE/m8\n5IP9ualyimDCKAQWR9TJNuHioRg9tPFgs20BaTPeJ3R5UaYbgoChH7+MAh+jPBpl+ud7tVoRxzFh\nGOJ5HkVR9CGtaZqiwpSmKElT2QwRa24fY8D3fY6PjyWYtar7750O6AhRyTa6rvvw3TQVw4jUB4wF\njtaEow8yTuV6iVIyGqjE/t34EWr7GkGVoyK5riwT8EMU4x+/yfbl2xRFSRp6YuCAnON4PJacJAVV\n0xJbx8GmKWlbRVkuuXPnDmFjwagLWy6W3Hj6vf/yPwKb2tSmNrWpf+trwxB9ldJlTXv8EOV7nP7y\nP+HRL3+aNi8xuiPZnaJ8j3ZdsrjzkOiZD6J8j65p8ZOI6nxFk1eM9qf4YSBjX6YbLIrtTqkKbWMX\nj6TxCVMJkQSCK08KSJgfCrAAKJcEyrA9HaOU6u1xjdW4hL5H2hXCSKVbeONtaBs6N65W5ZiuEy1G\nMpFdcssMsTqTXeUw7XUDBDGcP4B3fRNaa6btQsCHyw7yPHGti1JpuPvxsURGu/JTaTyWx2LxXOVv\nC1Xtc5bstblddxWmkuOiW5TnCYjzPNGOuHycMH47AwPSGOsGtXODoGvwn/rAYDLgXutGkdqKLBWN\nBcVC/szze5ewftzNrT0IIIlEq6Oynd4C2jhb5k5jkgk6SMUJL8lkvYtlP0qn3LgQQFNQ+SlRFFmj\nBatjihLRrkSJXJML1LVM26ydy6ijbqWhc7vrbqTPMpDAMApZFyxrg7r6LARRrwshiCGdEtpRTGNk\ntz2KIgK0rI+zEbclOVpKrtMCHlJxOhRNWdWzltQlxguEOalWtF5IEARUVSWM6M5NATB2nVpf9DK+\n7/P93//9eNefQ3/5lwTImI4sG9F1nbxuNBMwPt5F+2IeIJk/MqqlxntyfVZ3pdKJ1eRJfha6EfZm\nuk9OzGg06i3RJ14jGqXlMWmzGNbYdDLSuXdLPtf2mQoCf1inZCLjcbq1zGg4/Hwy6dkwjOj4fN+X\nv5vuEzUrYV5dVpZjVyzoCUML7F1e1HpuQbA8P6MkFoYEiHxF0zSy1giYXK1WeJ4ACa016/Wa8/Nz\n8HwJJlaqt+KmFhZ1uVxaUOL1Aa3ONj6Oo55RyrJMWFasRbfL53LrZi24zezK2z9XNvhXq6BnqfBD\nfF80T77vC8tolBxreULaLDB+1DOPbdsyinx8Rc9MtuGIdVn1o39hGHJ2dtYzhnQd5uQA2pp7n/9/\nxeXulS9LZtJXfv13/gdiU5va1KY29W9FbTREX6U++5e+na1nniC8+Qx6fkK3OEFFCSdfeplke0Kn\nO6rzJW1eEk5GXPvzfwF9dsTpP/9lVvcfAwKqvDDgqf/qE3iTbWnglic9MDKrc7G79rw+zFH5gbA1\n6zmmKujWC/ydqwICLKPAaEYzu0EU+GJfyzA2I65z8vPd6hxv50qvd+jOD/Eu3+5Hn5TNQTLruTQu\no5mAkSjleN2y255KNtJoi7uHj3liS0wXVDqR/8YZjLZovRD/8KUeUKnxNmZ5Qnd2SLc8I7jyJKZa\no6aXeme3PoTVjVlZpzuCSMCRPUezOhtYrfGOgKu2uhDY2Q5ueRdyjExTC+C0dtlmfY5Kpr2DHkYL\ngPBk7EY0LgwhuDDoH7JtYBgnUkoRBEE/2kQ6wfjSGEZRSNtqEbmbbgjbLJYChlz2VFuzVolYblst\nUZ7ntG3LpUuXAMl8MZ7NWDo7QGXbVq9hWQrHyFjNkymWcs3ZTq95khDQjlW8w4RK1j/blt358V4/\nEogX9M8SgK+gts57vu8LQ+VYEvffi+VYKD+0DXIgobdaGl/jR+R5Ls5m63NxNJxdGX4+jCmajtRH\n9CRKUdc1p6en7Ozs9PfIjeABxLF14HMOgIpB75Vty2ctnQz3KZNwWFY2Syk/FcalLXpGp06EcYiq\nBWa8K5k9Pr1rYl3XtG1LkiR4D18Uq26XqxVa8BUl8hw5ds5lhQWxaKgUsDhCO7e/PgD3AltpdTdm\neSygygIopyfsQVa2DZ4vLFboYfyIoiioqorpVPLSlstlD7rLsqSqKra2tlBK8eDBA3Z2dlitVj0o\nl+dYnsmdnZ1eT7Rer3tw0bbCfKdpIlqi9sI4sNWO+XQXrl8+b/Plitlsai9SySaC8nqzkbYz8tmx\n4a8EMa0XWkATDHbw0OvOJKi47C3S3/aMOjfJrsMorz/vMD8W6/N4QlEURFEkQcNxxtoEjJIYijk6\nmYlhhB+C0dy4/ey/4l+MTW1qU5va1B+22miIfh8qu37J5vcsOP71z3PyW29w/tLrNMs1AOuHJ6wf\nnlKcLFjdO2LxqX9I8PSHCZKIMEtYHpxhdEe8PUafPJRGYXki/5g30iSq0XQQzIN17/Kk2VceKozx\nRrZ5cGyL8lDZDlH+GKPEOcrN2JvHd+S/548wbYO3fwuCmC6fo4/eFKOGtuoZCpdrhB8IWGvsiJa2\nGThx1od9PjHxpSlwomc/xMwPMYsjgnrFavakXEeVi8XzaIZ3+UmC6++G8TZq97o0JnUhrMfqGDXe\nETarrXp2xxy93oddmrXVtEz2pLlcShCsszDudRiu3PmGqQADd21eII0ryLU7UGa63jlLwi070XMo\nO8JnG6q6HkYUnZGF1pZ1muzC+pyiKOy9EHajzwSyjFPf1FoNiymWPSPUtm0/Bqm1HvJn/EE/oSa7\ng14mjK1mpuvd+nDGAM6mPZFmXIURarLLxKzl+XAudWEqzaM1DXDlNCK0YrXs0wmD5lgtt9MPwqi5\n8FboG1UHWLTWMh5lgcB4nHF0JIYO6tJTliEUi/VKS3PtrJrbL/wDfuzHfozd3V2xaM5GfVMfxxFx\nGPRgCKxGxq1HtjPYk7u1dGBbNz2Iz6MtaeTTiZx7nEnTHwhjo7QFQ0AdSmZUHItLmm+k8TY2H8ws\njgZQ03U9GNJBStMhf1cX8nNNAeMdOWc3mqmbAew60Fouhs0AB4aMvX+NBbfW0TCKIhrj0XUddV2L\nUYfv9WN0WmvCMGS9XhPHMXVdU1XCnsRxzO7uLm0rOVJdJ0YWjsnzfZ/VavU245Y+TBgI6wtGMXHG\ng8NHYt+NNzgmxmPwfGaTMXXdAErAicvZagpoa4KuEcbbssnm7D5BvRLmyBmpgHxHgDzn8RizPsec\nvPX28N1yIZpJu36qXIouyffQk30YbfXue3Vd998zcewArGUdXTiz8nnhhRd49dVXOXj1BV555RUO\nDu6xqU1talOb+je3NgzR71Bf+R+/D+V5hFlC/J4P0BU59Z2XJVsFSJ//Rrp8wcN/8ItU5yvS/S2M\n7rj5/T9Ic/917v2dn++zi3Td8sR3fwcqCAmuvUuaqKYSgwMnnm8r1M5NzPyhMCXZjugfnNvXaNbb\nHKs4E1vgUEJcV+sC3/dJkgTufA59/hjPjt3h+agkQ58+xJ9si5vb3i059kU3OCeQ90MBQZ5HTkxW\nn/dudI6RopCQRXP/RWF0lIc5eyBhnXUhjY3yhc0IY9FQ2AbZOAtqx5JY3UkPFoqljJ/1WSsNana1\nn/c3xXLIylHeAGzaSnaIQZqvdGJH4Gyz+S+6rnneoBdqKjlPPxI2wzIlvmn/Jce2xni97TAgr9P1\n24JUe1ADxDSDBsQ1VV4gO+LLoz5vqY3GBEHA0dERWZb1YnLXgKapZRxcxlHvYBfKtTTVAACynV5M\nb47uCBgd72FOD+iuvAe/nA/nc0HL5jRLJkxQTSkubr4aMm8uOp2VS3km8zMIUwoNqael6XU7/jZn\nSXUt66rpgV8WGPTrn8M881EZM7M791prGVGzx9AGHj58yM7ODiO9tmA3EfYNLU2vBRBad8P9cuyJ\nFotsZ7hBEPXPJuaCk2CVc97FxHEseqk4lhG5ZDqM1yUT2nCE1tqOiIlWj/sv0J0/xr/9YVkXxyZ6\n/jDmeOE8ewe+swfCWpa5sLTuXqzPxdQk2+mZWNHX+cP5OxCoBKmZMLGZUFlvI991HWkUoBkst4NA\nTCzOzs57htOxk64uAp/pdNoHt9a1ZCbFcSyMoa7lnls2D4Q5jdo1bTTm6OiIJElIkqS7dpT1AAAg\nAElEQVRnnST8WKy7HRCLokjW2N0Lx3hahhs/wEz2JcvKWY4vjwf9oSuX3WbZc40nQD4/FZv0IEJt\nX8esz6m3xLQlbmX09vT0lDSVbKStiP57RQcp/uJQ2OidmwOTXResieSZdBs8oxmEKafnc3Z2dmB9\nzo1nnv+q/85salOb2tSm/vXWhiH6PVY4Soh2tuialq7IMesl/nhCsLVDMJ1htMbf3ueJH/7LPPk9\n30mbl5QnC+b/+OcIn/4gQRLZkboVygIjlWaYYiW749mWjLAtTvoRE5OfYtYi1ja5HemJM2trLSYF\navu6nKBzNsvPiKJIRNFKwWQXf/cqpm3ECKLTdKszlOejl6IRMueH8g+8cwwrlmLfHKVWqK2hLgjD\nEHN60Ot6tNY0uhO3NRDXrraSLJtqLTu2NstILLLjYUdbeQKWiiXtvVfFDCBMRYthLY7N6mxgDNpK\nQJQXSpNYLga2Y/v6YNvryrEcNmsG3Q6Aqa2H83ABps5qen3egyF3TW0nTFCLbWrX52IZ7gWD7gYk\n48YYWhvO2bYt6/Wa1WpFWZbEyp5ftm1DTm1j3LUo02Em+5jTA8ziCP/+VzAHX5HmfzQiiiS4NQxD\nAUMOJKYTCbJ0TaHRg922A87OxEF5qOvvFUDZFKjJLn61lPNw2iSnlyqX+K2YWShdc5aXAn6Vh1Ey\nhsVFBzrLPoneTIt1uRXA92N3Xcd6vQY/JI5jEftHkTz3T/9x6w6meoYgUAYTZb1r2I//+I9bNijG\n1IVdZ0XQrC3wqXsdiO8LMDaeNexoquE8XbX1AIbaWl7rD/fOGMNW2JEiDBIAkz3q7BIFMmoW+wgg\nCwJp0utScq3aWjRzuhGQeP5QRhj9CGOwZiEleVn37Jopc3EpNNp+BgV8KwcO3AiZn9ixL38YkXOg\nPohkzNOypF3X9ZbXxhtsth1rtFrlvUbHARJnq+15Xm9d7f7c6amyLGO5XMprlYCgNI7EpKUpUbqW\n5yVKCTzF/v4+aZr2jnZaixbN2a/Le4dw/lC+6y7YwrdGyT2c7NGOdpnP56wrGSdFeTI2WxeyMWCf\neTN/iDm9148V+lo+86YuaR/fRx/fl78vlwSB2IJXQYYxhjRNSUNP3B2DmNpPhsyxKEWNtjhbrFit\nVnKCpmOEHWc8utNrxczZA3YSAfZrIg7uvsUbb7zBvU/9HPe+9Gvc++W/yxv/54/9Tv/sbGpTm9rU\npv4AauMy9zuUP93qBdOmzPG2LokNtqdRnv//sfemsbal6V3f7x3WvIezz3TPnWro6rntdjfdbgYb\nG5NOQmSFJIqJiUBRIhRFEIywEBArSHxAifiQAEJ8ChkkkyAlICdgcMDGCEM7buM23a7qqq6u6lvT\nHerec8+0h7XXvN58eN619i3L7TAEFMh5patbde+5e6+99rvWep/3+f9/f9r334G+Q8X3CF74OIuP\nPy9SuRu3cVdPaMt6BCz0TYtOMly+lsDDIWNIW/T+LTF7p3Pc8jEqkvBCZawABfZOZJG1dyILvrN3\nZbE/WQjhy/WoWCQ1bdtiD57Hrb6CK3PM8XO47UqKuYNbI/CAKsddPvpgZk25hsPn5MFelygbErZb\nMc93LSrdI89zDvdFo++Wp36RFkC3Rt/4kA/NjCWTpal2O7hOvCcqTHAmwD7/8dFvoVzvZW2gYimG\nVDoXqYzvgAjJ7dAvOi+kgwVyHjwBTiRivlDTGlSwK46UGWV/gBRCkS8c4pkvtMT3MSzGZQfdQOdB\nBXWJu3yECRMpJqx096wxbDY5XdcJutiPyWQiBYSNZEGcX9LaBBXNaJqGJDE0dU0wP4HlY9T+HbpH\n36Q5aGTBH0TUvfIdufWOkDfIwZyXopnAQwSkULV9s/P2eL/a0LVTHnYwFhPg5Vfs0M7ee7GYybzo\n0JjWU+uyxa7DMdDW6hKChAmFWKzqAhPGOAdNJ4GaRVEQx7GgmIsLinaG1lo6mjj5DNsrumhKud2S\nJTG/8srX+d7v/V4mk4mY6WcnBNtzofg5kUs2yhJYK90hn4Oj/DG0QYoxBjVBKHi+8zeQCUnmMveq\nnCra43Bid/lgQ4aR61lXLdN2RRHvE4YhedWQpr4IKdc73DbeYTZI7/zc7ft+lNmxPiMLIqgb8QpW\nOe7igXSwPKmR2fGITFd+3ooXzUHb7gpSGItV1bUyj4s1YZhRVRVWOZpWENhySUghHwQBT548wVpL\nmqZjV7Oua4pCNkHoGrIsJc+3I1xDOUHTG2Nouh7nOiloqg0uzLwvSrOtWtbrS/b398fixzk3UutS\nq6BXhK6GTnlQys7H1vSeSqhFsnj2+MlYnMkHMfIrnkrm0uTQe4qeyaPyYBG3OqX91lfR0z2688eg\nNfb57xyLoCAIpJALQzZFIQVc3xNqwE53GWRtxV6aoTxZsNAJSV9Ilz2dywbT4pZ8D8jGUZomNI0U\nowHQv/8meu+I8Dt+K/d/8aflWG04dr3ufu63/RM8na7H9bge1+N6/L85rguiX2f0+QoVxZg0pX74\nLiGgbDA+qGkbXNvgNlc0b71KuL9HcPslgs/867iLB0R7E4qnVyRHexRPheCkF0foyQJX5vSFFFn0\nzS6Q8fglKSr6RoIfbbQLlRxkdYvbPr/oakTxBq4lz8XvAQ519ALGL3pVGGOO7siu/NP30FFCtzxH\np1NUMpHiY/jQdSkFjX9Qu/XZWDC507c5vPUxWXCM0jQvY8n2R9+RSqZyzOlcPkt+IZ/DB2KqeCqo\nbw9wGEluVUWbptj1E3ltreV9rIcbuF6AD64TWcwQaqu099Qku45X10MtO+5ucymSJN/1IsoEwDC8\nbzwbuzfOQVmWTLNUFlmDrMoT21Q630kcXT9K7SZJxHKzHRf+YRiKHG52A6oNqpNCzm6vUCcfxYYW\n9/QtgrqUMNl0jiulAxhvz8YFdthsaPVM8NWeCigFCzvTuLHS6QkTkZv5TsFlF7IoVwBSVA+LfU8Y\nVAPm3HfjCBJfeAXkTU8URdhmiwvSXTHmejpl0V4GR1lQ25QQKTpw0OkA2/coLYvvQT7YPwNgGDoH\ng6zQaiV5OqtT0irnp37uDb7whS8A+M4SBL3HZPfd2L0JPHTCGAsqAdw4N61y0Hj5nXPeO+R9TlE2\n5nt18ZyIftdhq8sx |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: reflectance rather than radiance
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
🥇 for attentive reading!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Couple small things, but LGTM.
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Planet Labs' analytic data products (both Rapideye and Dove) are reported in units of radiance: W/m^2. That means that every pixel in an analytic tiff has a natural language interpretation: \"How much light was captured over this spot of ground?\"\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
W/m^2 -> W/m^2/sr
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
even better, W/m$^2$/sr to get a real superscript
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Using LaTeX in Jupyter notebooks: http://data-blog.udacity.com/posts/2016/10/latex-primer/
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
fixed!
toar/toar_planetscope.ipynb
Outdated
"\n", | ||
"But over the course of a day or year, the number of photons that the sun shines on the scene rises and falls. If you naively compare the radiance values of two scenes over the same spot on Earth from the same satellite but a few weeks (or even just hours!) apart, you will likely find dramatic radiance differences **even if nothing on the ground has changed!**\n", | ||
"\n", | ||
"In addition to this variation, each of Planet Labs' 137 satllites have small amounts of variation in their spectral filters which yields slight differences in radiance measurements, even from two satellites taking pictures of the same exact place at the same exact moment!\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
True, but reflectance is also dependent on spectral response of the filters.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think the next paragraph does a good job of addressing that
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is great, Matt! Just a few suggestions. Excited to get this up.
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Planet Labs' analytic data products (both Rapideye and Dove) are reported in units of radiance: W/m^2. That means that every pixel in an analytic tiff has a natural language interpretation: \"How much light was captured over this spot of ground?\"\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Using LaTeX in Jupyter notebooks: http://data-blog.udacity.com/posts/2016/10/latex-primer/
toar/toar_planetscope.ipynb
Outdated
"- [Planet API Key](https://www.planet.com/account/#/), stored as environment variable `$PL_API_KEY`.\n", | ||
"- [Planet 4-Band Imagery](https://www.planet.com/docs/imagery-quickstart/) with the following specifications: `item-type`: `PSOrthoTile`, `REOrthoTile`, or `PSScene4Band`; `asset-type`: `analytic`, or `basic_analytic`" | ||
] | ||
}, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You could skip listing the steps and requirements and tell users to follow the NDVI guide through the few steps. This guide should focus on the conversion from radiance to reflectance.
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Step 2. Extract the Data from Each Color Band " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Again, you could skip the download step and refer users to the NDVI guide. Your guide could start with "extract data from the spectral bands" or it could start with Extract the coefficients from the metadata.
toar/toar_planetscope.ipynb
Outdated
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Step 5. Save the Radiance Image " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
^^ +1 to @NickWIlson33's suggestion. That's useful info to include.
toar/toar_planetscope.ipynb
Outdated
"In addition to this variation, each of Planet Labs' 137 satllites have small amounts of variation in their spectral filters which yields slight differences in radiance measurements, even from two satellites taking pictures of the same exact place at the same exact moment!\n", | ||
"\n", | ||
"To correct all this radiance variation you would have to do a lot of math using the exact location and local time of day to find the angle to the sun and sun-earth distance, then compute a solar irradiance model to estimate how many photons of each band are present in the image, and finally convolve that spectrum with the spectral response of the individual satellite to yield the number of photons of each band that are actually recorded by that sensor. Dividing by this number normalizes the measured brightness to the brightness of the sun at that time and place through that particular filter, yielding a much more comparable number: reflectance.\n", | ||
"\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is a big block of text at the top of a notebook. Perhaps break it up with a new topic heading or drop in a diagram/pic of a satellite showing where the spectral filter is
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agreed, I broke it up with a little image
@MattFerraro - Can you rebase this branch with master, and put your notebook in the new "jupyter-notebooks" directory? Master was rearranged a bit since opening this PR. Thanks! |
Mostly this is a copy of the NDVI notebook, with some more text focusing on the Radiance aspect