-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
3,437 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -38,3 +38,4 @@ numpy==1.25.0 | |
opencv-python==4.8.1.78 | ||
pynvml==11.5.0 | ||
PyYaml==6.0.1 | ||
pandas<2.1.0 |
149 changes: 149 additions & 0 deletions
149
scripts/cpt/8_2/mixtral_112gpus_8_2_sheared_llama_portion_fluency_sf4.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
#!/usr/bin/bash | ||
|
||
#SBATCH --job-name=mxitral_random_split_112gpus_8_2 | ||
#SBATCH --output=/mnt/petrelfs/share_data/zhutong/runs/mxitral_random_split_112gpus_8_2/%x-%j.log | ||
#SBATCH --error=/mnt/petrelfs/share_data/zhutong/runs/mxitral_random_split_112gpus_8_2/%x-%j.log | ||
|
||
#SBATCH --partition=MoE_T | ||
#SBATCH --ntasks-per-node=1 | ||
#SBATCH --cpus-per-task=64 | ||
#SBATCH --mem=0 | ||
|
||
#SBATCH --nodes=2 | ||
#SBATCH --gres=gpu:8 | ||
#SBATCH --quotatype=reserved | ||
|
||
# reserved spot | ||
|
||
source ~/anaconda3/bin/activate smoe | ||
|
||
{ | ||
num_nodes=2 # should match with --nodes | ||
num_gpu_per_node=8 # should match with --gres | ||
|
||
# #cpu/#num_gpu_per_node | ||
export OMP_NUM_THREADS=32 | ||
export LOGLEVEL=INFO | ||
# export NCCL_DEBUG=INFO | ||
# export TORCH_DISTRIBUTED_DEBUG=DETAIL | ||
# export TORCH_SHOW_CPP_STACKTRACES=1 | ||
# export CUDA_LAUNCH_BLOCKING=1 | ||
|
||
model_type="mixtral" | ||
comment="mistral 7B, random 2/8, sheared llama data portion" | ||
pretrained_model=/mnt/hwfile/share_data/zhutong/models/Mixtral-8x7B-v0.1-Random-8Select2 | ||
tokenizer_path=/mnt/hwfile/share_data/zhutong/models/Mixtral-8x7B-v0.1-Random-8Select2 | ||
dataset_dir=/mnt/petrelfs/share_data/quxiaoye/SlimPajama-fluency-processed-agg | ||
validation_dir=/mnt/petrelfs/share_data/quxiaoye/data/llama1_7B_val_set_tokenized | ||
|
||
lr=2e-4 | ||
final_lr_portion=0.1 | ||
per_device_train_batch_size=8 | ||
per_device_eval_batch_size=8 | ||
gradient_accumulation_steps=4 | ||
block_size=4096 | ||
num_tokens="200*10^9" | ||
warmup_tokens="15*10^8" | ||
# warmup_tokens="0" | ||
eval_tokens="2.5*10^9" | ||
seed=1227 | ||
deepspeed_config_file=conf/deepspeed/bf16_zero1_default.json | ||
|
||
num_selects=2 | ||
scale_factor=4.0 | ||
|
||
max_steps=$(echo "${num_tokens} / ($block_size * $per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node)" | bc) | ||
max_train_samples=$(echo "${num_tokens} / ($block_size)" | bc) | ||
echo "max_steps: $max_steps" | ||
echo "max_train_samples: $max_train_samples" | ||
global_bs=$(echo "$per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node" | bc) | ||
echo "global batch size: $global_bs" | ||
tokens_per_batch=$(echo "$global_bs * $block_size" | bc) | ||
echo "#tokens/batch: $tokens_per_batch" | ||
# warmup_steps=$(echo "$warmup_tokens / ($tokens_per_batch)" | bc) | ||
warmup_steps=100 | ||
echo "warmup tokens: $warmup_tokens, warmup steps: $warmup_steps" | ||
# eval_steps=$(echo "$eval_tokens / ($tokens_per_batch)" | bc) | ||
eval_steps=340 | ||
echo "eval interval (tokens): $eval_tokens, steps: $eval_steps" | ||
|
||
data_cache=resources/cache | ||
base_dir="/mnt/petrelfs/share_data/zhutong/runs/mxitral_random_split_112gpus_8_2" | ||
output_dir=$base_dir/outputs/$SLURM_JOB_NAME-$SLURM_JOB_ID | ||
mkdir -p $output_dir | ||
echo "output_dir: $output_dir" | ||
scontrol write batch_script $SLURM_JOBID $output_dir/sbatch.sh | ||
git diff > $output_dir/diff.patch | ||
env > $output_dir/env | ||
echo -e "Job ID: ${SLURM_JOB_ID}\n\nGit commit: $(git log -1 --oneline)\n\nGit branch: $(git branch | grep "*")\n\nComment: ${comment}" > $output_dir/comment.txt | ||
echo "$SLURM_JOB_ID" > $base_dir/latest.jobid | ||
ln -snf $output_dir $base_dir/latest.dir | ||
ln -snf $(scontrol show job $SLURM_JOB_ID | grep "StdOut=" | cut -d '=' -f 2) $base_dir/latest.log | ||
|
||
nodes=($(scontrol show hostnames $SLURM_JOB_NODELIS)) | ||
nodes_array=($nodes) | ||
head_node=${nodes_array[0]} | ||
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) | ||
echo "Node: $head_node" | ||
echo "Node IP: $head_node_ip" | ||
echo "Node list: $SLURM_JOB_NODELIS" | ||
|
||
srun torchrun \ | ||
--nnodes ${num_nodes} \ | ||
--nproc_per_node ${num_gpu_per_node} \ | ||
--node_rank $SLURM_NODEID \ | ||
--rdzv_id $RANDOM \ | ||
--rdzv_backend c10d \ | ||
--rdzv_endpoint $head_node:29518 \ | ||
smoe/entrypoint/cpt/cpt_fpt.py \ | ||
--prob_map "sheared_llama" \ | ||
--num_selects ${num_selects} \ | ||
--moe_calculator_score_scale_factor ${scale_factor} \ | ||
--deepspeed ${deepspeed_config_file} \ | ||
--model_name_or_path ${pretrained_model} \ | ||
--model_type ${model_type} \ | ||
--tokenizer_name_or_path ${tokenizer_path} \ | ||
--dataset_dir ${dataset_dir} \ | ||
--data_cache_dir ${data_cache} \ | ||
--validation_dir ${validation_dir} \ | ||
--per_device_train_batch_size ${per_device_train_batch_size} \ | ||
--per_device_eval_batch_size ${per_device_eval_batch_size} \ | ||
--do_train \ | ||
--evaluation_strategy steps \ | ||
--eval_steps ${eval_steps} \ | ||
--seed ${seed} \ | ||
--bf16 \ | ||
--num_train_epochs 1 \ | ||
--final_lr_portion ${final_lr_portion} \ | ||
--optim adamw_torch \ | ||
--adam_beta1 0.9 \ | ||
--adam_beta2 0.95 \ | ||
--learning_rate ${lr} \ | ||
--weight_decay 0.1 \ | ||
--max_grad_norm 1.0 \ | ||
--warmup_steps ${warmup_steps} \ | ||
--max_steps ${max_steps} \ | ||
--max_train_samples ${max_train_samples} \ | ||
--save_strategy steps \ | ||
--save_total_limit 1 \ | ||
--save_steps ${eval_steps} \ | ||
--dataloader_num_workers 0 \ | ||
--dataloader_pin_memory True \ | ||
--gradient_accumulation_steps ${gradient_accumulation_steps} \ | ||
--block_size ${block_size} \ | ||
--output_dir ${output_dir} \ | ||
--overwrite_output_dir \ | ||
--ddp_timeout 3600 \ | ||
--ddp_find_unused_parameters False \ | ||
--torch_dtype bfloat16 \ | ||
--gradient_checkpointing \ | ||
--logging_first_step True \ | ||
--logging_strategy steps \ | ||
--logging_steps 5 \ | ||
--log_level info \ | ||
--log_level_replica warning \ | ||
--log_on_each_node False \ | ||
--report_to none \ | ||
--gate_type "TopKBalancedNoisyGate" \ | ||
--calculator_type "UniversalCalculator" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
#!/usr/bin/bash | ||
|
||
# set -vx | ||
|
||
content_column=input_ids | ||
src_tokenizer_dir=/mnt/petrelfs/share_data/zhutong/models/llama2_7B | ||
tokenizer_dir=/mnt/petrelfs/share_data/zhutong/models/Mistral-7B-v0.1 | ||
|
||
data_dir=/mnt/petrelfs/share_data/zhutong/data/slimpajama_fluency_llama_middle_parts | ||
out_dir=/mnt/petrelfs/share_data/zhutong/data/slimpajama_fluency_mistral_middle_parts | ||
# data_dir=/mnt/petrelfs/share_data/zhutong/data/llama1_7B_val_set_tokenized | ||
# out_dir=/mnt/petrelfs/share_data/zhutong/data/mixtral_val_set_tokenized | ||
|
||
|
||
logs_dir=logs | ||
|
||
mkdir -p $logs_dir | ||
|
||
# for loop in: en_arxiv, en_book, en_c4, en_cc, en_stack, en_wikipedia, github | ||
# for data_type in $(ls $data_dir) | ||
for data_type in "en_arxiv" "en_book" "en_c4" "en_stack" "en_wikipedia" "github" | ||
do | ||
# get all parts from source data dir | ||
for part in $(ls $data_dir/$data_type) | ||
do | ||
echo "tokenizing $data_dir/$data_type/$part - $(ls $data_dir/$data_type/$part | wc -l)" | ||
log_path=logs/tokenize-$data_type-$part.log | ||
nohup srun -p MoE_T -N1 -n1 --cpus-per-task=32 \ | ||
python -m smoe.utils.tokenize \ | ||
-f jsonl \ | ||
-c $content_column \ | ||
-s $src_tokenizer_dir \ | ||
-t $tokenizer_dir \ | ||
-i $data_dir/$data_type/$part \ | ||
-o $out_dir/$data_type/$part \ | ||
1>$log_path 2>&1 & | ||
# echo "$data_type/$part > $log_path" | ||
sleep 3 | ||
done | ||
|
||
# log_path=logs/tokenize_$data_type.log | ||
# nohup srun -p MoE_T -N1 -n1 --cpus-per-task=32 \ | ||
# python -m smoe.utils.tokenize \ | ||
# -f jsonl \ | ||
# -s $src_tokenizer_dir \ | ||
# -c $content_column \ | ||
# -t $tokenizer_dir \ | ||
# -i $data_dir/$data_type \ | ||
# -o $out_dir/$data_type \ | ||
# 1>$logs_dir/tokenize_$data_type.log 2>&1 & | ||
# echo "$data_type > $logs_dir/tokenize_$data_type.log" | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Copyright 2023 Mixtral AI and The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import TYPE_CHECKING | ||
|
||
from transformers.utils import ( | ||
OptionalDependencyNotAvailable, | ||
_LazyModule, | ||
is_torch_available, | ||
) | ||
|
||
|
||
_import_structure = { | ||
"configuration_mixtral": ["MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MixtralConfig"], | ||
} | ||
|
||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
_import_structure["modeling_mixtral"] = [ | ||
"MixtralForCausalLM", | ||
"MixtralModel", | ||
"MixtralPreTrainedModel", | ||
"MixtralForSequenceClassification", | ||
] | ||
|
||
|
||
if TYPE_CHECKING: | ||
from .configuration_mixtral import MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MixtralConfig | ||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
from .modeling_mixtral import ( | ||
MixtralForCausalLM, | ||
MixtralForSequenceClassification, | ||
MixtralModel, | ||
MixtralPreTrainedModel, | ||
) | ||
|
||
|
||
else: | ||
import sys | ||
|
||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) |
Oops, something went wrong.