Skip to content

Commit

Permalink
Update 2-case2.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 16, 2024
1 parent 5903568 commit abdb96b
Showing 1 changed file with 39 additions and 22 deletions.
61 changes: 39 additions & 22 deletions blueprint/src/chapters/2-case2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -250,10 +250,6 @@ \chapter{Case 2}
\lean{Solution.two_le_multiplicity}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$ with multiplicity $n$.\\\\
Then $2 \leq n$.
\end{lemma}
Expand All @@ -273,7 +269,6 @@ \chapter{Case 2}
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S'=(a, b, c, u)$ be a $solution'$.\\\\
Then $a^3 + b^3 = (a + b) (a + \eta b) (a + \eta^2 b)$.
\end{lemma}
Expand All @@ -295,7 +290,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S'=(a, b, c, u)$ be a $solution'$.\\\\
Then $(\lambda^2 \divides a + b) \lor (\lambda^2 \divides a +
\eta b) \lor (\lambda^2 \divides a + \eta^2 b)$.
Expand Down Expand Up @@ -327,10 +321,6 @@ \chapter{Case 2}
\lean{ex_dvd_a_add_b}
\leanok
\uses{def:Solution1}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
Let $S'=(a, b, c, u)$ be a $solution'$.\\\\
Then $\exists a_1,b_1 \in \cc{O}_k$ such that $S_1=(a_1,b_1,c,u)$ is a $solution$.
\end{lemma}
Expand Down Expand Up @@ -389,7 +379,6 @@ \chapter{Case 2}
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $a + \eta b = (a + b) + \lambda b$.
\end{lemma}
Expand All @@ -409,7 +398,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $\lambda \divides a + \eta b$.
\end{lemma}
Expand All @@ -430,7 +418,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $\lambda \divides a + \eta^2 b$.
\end{lemma}
Expand All @@ -452,7 +439,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $\lambda^2 \notdivides a + \eta b$.
\end{lemma}
Expand All @@ -477,7 +463,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $\lambda^2 \notdivides a + \eta^2 b$.
\end{lemma}
Expand All @@ -501,7 +486,6 @@ \chapter{Case 2}
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
Then $(\eta + 1) (-\eta) = 1$.
\end{lemma}
Expand All @@ -522,7 +506,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\
Let $S=(a, b, c, u)$ be a $solution$.\\
Let $p \in \cc{O}_K$ be a prime such that $p \divides a+b$
and $p \divides a+\eta b$.\\\\
Expand All @@ -545,7 +528,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
Let $S=(a, b, c, u)$ be a $solution$.\\
Let $p \in \cc{O}_K$ be a prime such that $p \divides a+b$
and $p \divides a+\eta^2 b$.\\\\
Expand All @@ -568,7 +550,6 @@ \chapter{Case 2}
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$ be a unit. \\\\
Let $S=(a, b, c, u)$ be a $solution$.\\
Let $p \in \cc{O}_K$ be a prime such that $p \divides a+\eta b$
and $p \divides a+\eta^2 b$.\\\\
Expand All @@ -585,6 +566,12 @@ \chapter{Case 2}
%\lean{}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S=(a, b, c, u)$ be a $solution$.\\\\
We define $x \in \cc{O}_K$ such that $a + b = \lambda^{3n-2} x$.\\
We define $y \in \cc{O}_K$ such that $a + \eta b = \lambda y$.\\
Expand All @@ -597,6 +584,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_y}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides y$.
\end{lemma}
Expand All @@ -614,6 +607,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_z}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides z$.
\end{lemma}
Expand All @@ -630,6 +629,12 @@ \chapter{Case 2}
\lean{Solution.lambda_pow_dvd_a_add_b}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S=(a, b, c, u)$ be a $solution$ with multiplicity $n$.\\\\
Then $\lambda^{3n -2} \divides a + b$.
\end{lemma}
Expand All @@ -651,6 +656,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_w}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides w$.
\end{lemma}
Expand All @@ -667,6 +678,12 @@ \chapter{Case 2}
\lean{Solution.lambda_not_dvd_x}
\leanok
\uses{def:Solution}
Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\
Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta_3 \in K$ be any primitive third root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $S$ be a $solution$.\\\\
Then $\lambda \notdivides x$.
\end{lemma}
Expand All @@ -688,7 +705,7 @@ \chapter{Case 2}
\label{lmm:coprime_x_y}
\lean{Solution.coprime_x_y}
\leanok
\uses{def:Solution}
\uses{def:Solution, def:Solution_x_y_z_w}
Let $S$ be a $solution$ with multiplicity $n$.\\\\
Then $\gcd(x,y) = 1$.
\end{lemma}
Expand All @@ -710,7 +727,7 @@ \chapter{Case 2}
\label{lmm:coprime_x_z}
\lean{Solution.coprime_x_z}
\leanok
\uses{def:Solution}
\uses{def:Solution, def:Solution_x_y_z_w}
Let $S$ be a $solution$.\\\\
Then $\gcd(x,z) = 1$.
\end{lemma}
Expand All @@ -730,7 +747,7 @@ \chapter{Case 2}

\begin{lemma}
\label{lmm:coprime_y_z}
\lean{Solution.coprime_y_z}
\lean{Solution.coprime_y_z, def:Solution_x_y_z_w}
\leanok
\uses{def:Solution}
Let $S$ be a $solution$.\\\\
Expand Down

0 comments on commit abdb96b

Please sign in to comment.