Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 19, 2024
1 parent 36b728f commit 33e8398
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 4 deletions.
3 changes: 1 addition & 2 deletions FLT3/FLT3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -960,8 +960,7 @@ lemma by_kummer : ↑S.u₄ ∈ ({1, -1} : Finset (𝓞 K)) := by
· use -1
use kX - kY - S.u₄ * kZ
rw [show λ ^ 2 * (kX - kY - ↑(u₄ S) * kZ) = λ ^ 2 * kX - λ ^ 2 * kY - ↑(u₄ S) * (λ ^ 2 * kZ) by ring]
rw [← hkX, ← hkY, ← hkZ]
rw [← S.formula2]
rw [← hkX, ← hkY, ← hkZ, ← S.formula2]
ring
· use 1
use - kX + kY + S.u₄ * kZ
Expand Down
32 changes: 30 additions & 2 deletions blueprint/src/chapters/2-case2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1158,8 +1158,36 @@ \chapter{Case 2}
\uses{lmm:lambda_sq_div_lambda_fourth, lmm:lambda_sq_div_new_X_cubed,
lmm:eq_one_or_neg_one_of_unit_of_congruent,
lmm:lambda_pow_four_dvd_cube_sub_one_or_add_one_of_lambda_not_dvd,
lmm:lambda_not_dvd_Z, lmm:formula2}
% TODO
lmm:lambda_not_dvd_Z, lmm:lambda_not_dvd_Y, lmm:formula2}
Let $n \in \N$ be the multiplicity of the solution $S$.\\
By \Cref{lmm:eq_one_or_neg_one_of_unit_of_congruent}, it suffices to prove that
$$\exists m \in \Z \text{ such that } \lambda^2 \divides u_4 - m.$$
By \Cref{lmm:lambda_pow_four_dvd_cube_sub_one_or_add_one_of_lambda_not_dvd}
and \Cref{lmm:lambda_not_dvd_Y}, we have that
$$(\lambda^4 \divides Y^3 - 1) \lor (\lambda^4 \divides Y^3 + 1).$$
By \Cref{lmm:lambda_pow_four_dvd_cube_sub_one_or_add_one_of_lambda_not_dvd}
and \Cref{lmm:lambda_not_dvd_Z}, we have that
$$(\lambda^4 \divides Z^3 - 1) \lor (\lambda^4 \divides Z^3 + 1).$$
We proceed by analysing each case:
\begin{itemize}
\item Case $(\lambda^4 \divides Y^3 - 1) \land (\lambda^4 \divides Z^3 - 1)$. \\
Let $m=-1$ and consider the fact that
$$u_4 - m = Y^3 + u_4 Z^3 - (Y^3 - 1) - u_4 (Z^3 - 1).$$
By \Cref{lmm:formula2}, we have that
$$u_4 - m = u_5 (λ^{n-1} X)^3 - (Y^3 - 1) - u_4 (Z^3 - 1).$$
Since, by \Cref{lambda_sq_div_new_X_cubed}, we know that
$$\lambda^2 \divides u_5 (λ^{n-1} X)^3$$
and, by \Cref{lmm:lambda_sq_div_lambda_fourth} and by assumption, we have that
$$\lambda^2 \divides Y^3 - 1 \land \lambda^2 \divides Z^3 - 1,$$
Then, we can conclude that
$$\lambda^2 \divides u_4 - m.$$
\item Case $(\lambda^4 \divides Y^3 - 1) \land (\lambda^4 \divides Z^3 + 1)$. \\
Let $m=1$ and proceed similarly to the first case.
\item Case $(\lambda^4 \divides Y^3 + 1) \land (\lambda^4 \divides Z^3 - 1)$. \\
Let $m=1$ and proceed similarly to the first case.
\item Case $(\lambda^4 \divides Y^3 + 1) \land (\lambda^4 \divides Z^3 + 1)$. \\
Let $m=-1$ and proceed similarly to the first case.
\end{itemize}
\end{proof}

\begin{lemma}
Expand Down

0 comments on commit 33e8398

Please sign in to comment.