Skip to content

pingxiang-chen/cifar10-uci-cs273a-final-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CIFAR10_UCI_CS273A_Final_Project

Winter 2022 UCI CS273A Machine Learning Final Project

Prerequisite

  • An NVIDIA GPU
  • Enable GPU with docker
  • Familiar with Pytorch

Our Enviroment

  • Hardware: NVIDIA GEFORCE RTX 3060

drawing

Run the program

Step 1. Build the image

cd cifar10-uci-cs273a-final-project
docker build . -t final

Step 2. Run the container with gpu and mount all project to the container

docker run --gpus all -v $(pwd)/.:/source/. -it final /bin/bash

Step 3. Inside the container, run train.py

python3 train.py

We implement 4 different deep learning neaural network: basic CNN, RestNet, GoogleNet, VGGNet to do the image classfication for CIFAR10. Please check the source code for further imformation.

Step 4. Evaluate each models with test images

python3 test.py

Useful Links

Reference

About

UCI CS 273A Final Project

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published