Skip to content

Commit

Permalink
cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
mukulpatnaik committed Feb 14, 2023
1 parent e3d1ddf commit 34e7e9c
Show file tree
Hide file tree
Showing 4 changed files with 192 additions and 7 deletions.
1 change: 1 addition & 0 deletions .gcloudignore
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# below:
.git
.gitignore
main-local.py

# Python pycache:
__pycache__/
Expand Down
7 changes: 4 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# ResearchGPT

This is a flask app provides an interface to enable a conversation with a research paper. You can enter a link to a
pdf hosted online or upload your own pdf. The app will then extract the text from the pdf, create embeddings from the text and use them with the openai api to generate a response to a question you ask. It will also return a source for the part of the text it used to generate the response and the page number.
This is a flask app provides an interface to enable a conversation with a research paper. You can enter a link to a pdf hosted online or upload your own pdf. The app will then extract the text from the pdf, create embeddings from the text and use them with the openai api to generate a response to a question you ask. It will also return a source for the part of the text it used to generate the response and the page number.

You can try a demo here: http://researchgpt.ue.r.appspot.com

Expand All @@ -15,8 +14,10 @@ pip install -r requirements.txt

## Usage

You need to have an openai api key and set it as the environment variable 'OPENAI_API_KEY'.

```bash
python app.py
python main-local.py
```

## Google Cloud Deployment
Expand Down
187 changes: 187 additions & 0 deletions main-local.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
from flask import Flask, request, render_template
from io import BytesIO
from PyPDF2 import PdfReader
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import openai
import os
import requests
from flask_cors import CORS

app = Flask(__name__)
CORS(app)


class Chatbot():

def parse_paper(self, pdf):
print("Parsing paper")
number_of_pages = len(pdf.pages)
print(f"Total number of pages: {number_of_pages}")
paper_text = []
for i in range(number_of_pages):
page = pdf.pages[i]
page_text = []

def visitor_body(text, cm, tm, fontDict, fontSize):
x = tm[4]
y = tm[5]
# ignore header/footer
if (y > 50 and y < 720) and (len(text.strip()) > 1):
page_text.append({
'fontsize': fontSize,
'text': text.strip().replace('\x03', ''),
'x': x,
'y': y
})

_ = page.extract_text(visitor_text=visitor_body)

blob_font_size = None
blob_text = ''
processed_text = []

for t in page_text:
if t['fontsize'] == blob_font_size:
blob_text += f" {t['text']}"
if len(blob_text) >= 2000:
processed_text.append({
'fontsize': blob_font_size,
'text': blob_text,
'page': i
})
blob_font_size = None
blob_text = ''
else:
if blob_font_size is not None and len(blob_text) >= 1:
processed_text.append({
'fontsize': blob_font_size,
'text': blob_text,
'page': i
})
blob_font_size = t['fontsize']
blob_text = t['text']
paper_text += processed_text
print("Done parsing paper")
# print(paper_text)
return paper_text

def paper_df(self, pdf):
print('Creating dataframe')
filtered_pdf= []
for row in pdf:
if len(row['text']) < 30:
continue
filtered_pdf.append(row)
df = pd.DataFrame(filtered_pdf)
# print(df.shape)
# remove elements with identical df[text] and df[page] values
df = df.drop_duplicates(subset=['text', 'page'], keep='first')
df['length'] = df['text'].apply(lambda x: len(x))
print('Done creating dataframe')
return df

def calculate_embeddings(self, df):
print('Calculating embeddings')
openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = "text-embedding-ada-002"
embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
df["embeddings"] = embeddings
print('Done calculating embeddings')
return df

def search_embeddings(self, df, query, n=3, pprint=True):
query_embedding = get_embedding(
query,
engine="text-embedding-ada-002"
)
df["similarity"] = df.embeddings.apply(lambda x: cosine_similarity(x, query_embedding))

results = df.sort_values("similarity", ascending=False, ignore_index=True)
# make a dictionary of the the first three results with the page number as the key and the text as the value. The page number is a column in the dataframe.
results = results.head(n)
global sources
sources = []
for i in range(n):
# append the page number and the text as a dict to the sources list
sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
print(sources)
return results.head(n)

def create_prompt(self, df, user_input):
result = self.search_embeddings(df, user_input, n=3)
print(result)
prompt = """You are a large language model whose expertise is reading and summarizing scientific papers.
You are given a query and a series of text embeddings from a paper in order of their cosine similarity to the query.
You must take the given embeddings and return a very detailed summary of the paper that answers the query.
Given the question: """+ user_input + """
and the following embeddings as data:
1.""" + str(result.iloc[0]['text']) + """
2.""" + str(result.iloc[1]['text']) + """
3.""" + str(result.iloc[2]['text']) + """
Return a detailed answer based on the paper:"""

print('Done creating prompt')
return prompt

def gpt(self, prompt):
print('Sending request to GPT-3')
openai.api_key = os.getenv('OPENAI_API_KEY')
r = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=0.4, max_tokens=1500)
answer = r.choices[0]['text']
print('Done sending request to GPT-3')
response = {'answer': answer, 'sources': sources}
return response

def reply(self, prompt):
print(prompt)
prompt = self.create_prompt(df, prompt)
return self.gpt(prompt)

@app.route("/", methods=["GET", "POST"])
def index():
return render_template("index.html")

@app.route("/process_pdf", methods=['POST'])
def process_pdf():
print("Processing pdf")
file = request.data
pdf = PdfReader(BytesIO(file))
chatbot = Chatbot()
paper_text = chatbot.parse_paper(pdf)
global df
df = chatbot.paper_df(paper_text)
df = chatbot.calculate_embeddings(df)
print("Done processing pdf")
return {'key': ''}

@app.route("/download_pdf", methods=['POST'])
def download_pdf():
chatbot = Chatbot()
url = request.json['url']
r = requests.get(str(url))
print(r.headers)
pdf = PdfReader(BytesIO(r.content))
paper_text = chatbot.parse_paper(pdf)
global df
df = chatbot.paper_df(paper_text)
df = chatbot.calculate_embeddings(df)
print("Done processing pdf")
return {'key': ''}

@app.route("/reply", methods=['POST'])
def reply():
chatbot = Chatbot()
query = request.json['query']
query = str(query)
prompt = chatbot.create_prompt(df, query)
response = chatbot.gpt(prompt)
print(response)
return response, 200

if __name__ == '__main__':
app.run(host='0.0.0.0', port=8888, debug=True)
4 changes: 0 additions & 4 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,10 +146,6 @@ def gpt(self, prompt):
def index():
return render_template("index.html")

@app.route('/_ah/warmup')
def warmup():
# Handle your warmup logic here, e.g. set up a database connection pool
return 200

@app.route("/process_pdf", methods=['POST'])
def process_pdf():
Expand Down

0 comments on commit 34e7e9c

Please sign in to comment.