forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Misc][VLM][Doc] Consolidate offline examples for vision language mod…
…els (vllm-project#6858) Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
- Loading branch information
1 parent
593e79e
commit aa46953
Showing
7 changed files
with
174 additions
and
212 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
""" | ||
This example shows how to use vLLM for running offline inference | ||
with the correct prompt format on vision language models. | ||
For most models, the prompt format should follow corresponding examples | ||
on HuggingFace model repository. | ||
""" | ||
from transformers import AutoTokenizer | ||
|
||
from vllm import LLM, SamplingParams | ||
from vllm.assets.image import ImageAsset | ||
from vllm.utils import FlexibleArgumentParser | ||
|
||
# Input image and question | ||
image = ImageAsset("cherry_blossom").pil_image.convert("RGB") | ||
question = "What is the content of this image?" | ||
|
||
|
||
# LLaVA-1.5 | ||
def run_llava(question): | ||
|
||
prompt = f"USER: <image>\n{question}\nASSISTANT:" | ||
|
||
llm = LLM(model="llava-hf/llava-1.5-7b-hf") | ||
|
||
return llm, prompt | ||
|
||
|
||
# LLaVA-1.6/LLaVA-NeXT | ||
def run_llava_next(question): | ||
|
||
prompt = f"[INST] <image>\n{question} [/INST]" | ||
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf") | ||
|
||
return llm, prompt | ||
|
||
|
||
# Fuyu | ||
def run_fuyu(question): | ||
|
||
prompt = f"{question}\n" | ||
llm = LLM(model="adept/fuyu-8b") | ||
|
||
return llm, prompt | ||
|
||
|
||
# Phi-3-Vision | ||
def run_phi3v(question): | ||
|
||
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501 | ||
# Note: The default setting of max_num_seqs (256) and | ||
# max_model_len (128k) for this model may cause OOM. | ||
# You may lower either to run this example on lower-end GPUs. | ||
|
||
# In this example, we override max_num_seqs to 5 while | ||
# keeping the original context length of 128k. | ||
llm = LLM( | ||
model="microsoft/Phi-3-vision-128k-instruct", | ||
trust_remote_code=True, | ||
max_num_seqs=5, | ||
) | ||
return llm, prompt | ||
|
||
|
||
# PaliGemma | ||
def run_paligemma(question): | ||
|
||
prompt = question | ||
llm = LLM(model="google/paligemma-3b-mix-224") | ||
|
||
return llm, prompt | ||
|
||
|
||
# Chameleon | ||
def run_chameleon(question): | ||
|
||
prompt = f"{question}<image>" | ||
llm = LLM(model="facebook/chameleon-7b") | ||
return llm, prompt | ||
|
||
|
||
# MiniCPM-V | ||
def run_minicpmv(question): | ||
|
||
# 2.0 | ||
# The official repo doesn't work yet, so we need to use a fork for now | ||
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa | ||
# model_name = "HwwwH/MiniCPM-V-2" | ||
|
||
# 2.5 | ||
model_name = "openbmb/MiniCPM-Llama3-V-2_5" | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, | ||
trust_remote_code=True) | ||
llm = LLM( | ||
model=model_name, | ||
trust_remote_code=True, | ||
) | ||
|
||
messages = [{ | ||
'role': 'user', | ||
'content': f'(<image>./</image>)\n{question}' | ||
}] | ||
prompt = tokenizer.apply_chat_template(messages, | ||
tokenize=False, | ||
add_generation_prompt=True) | ||
return llm, prompt | ||
|
||
|
||
model_example_map = { | ||
"llava": run_llava, | ||
"llava-next": run_llava_next, | ||
"fuyu": run_fuyu, | ||
"phi3_v": run_phi3v, | ||
"paligemma": run_paligemma, | ||
"chameleon": run_chameleon, | ||
"minicpmv": run_minicpmv, | ||
} | ||
|
||
|
||
def main(args): | ||
model = args.model_type | ||
if model not in model_example_map: | ||
raise ValueError(f"Model type {model} is not supported.") | ||
|
||
llm, prompt = model_example_map[model](question) | ||
|
||
# We set temperature to 0.2 so that outputs can be different | ||
# even when all prompts are identical when running batch inference. | ||
sampling_params = SamplingParams(temperature=0.2, max_tokens=64) | ||
|
||
assert args.num_prompts > 0 | ||
if args.num_prompts == 1: | ||
# Single inference | ||
inputs = { | ||
"prompt": prompt, | ||
"multi_modal_data": { | ||
"image": image | ||
}, | ||
} | ||
|
||
else: | ||
# Batch inference | ||
inputs = [{ | ||
"prompt": prompt, | ||
"multi_modal_data": { | ||
"image": image | ||
}, | ||
} for _ in range(args.num_prompts)] | ||
|
||
outputs = llm.generate(inputs, sampling_params=sampling_params) | ||
|
||
for o in outputs: | ||
generated_text = o.outputs[0].text | ||
print(generated_text) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = FlexibleArgumentParser( | ||
description='Demo on using vLLM for offline inference with ' | ||
'vision language models') | ||
args = parser.parse_args() | ||
parser.add_argument('--model-type', | ||
'-m', | ||
type=str, | ||
default="llava", | ||
choices=model_example_map.keys(), | ||
help='Huggingface "model_type".') | ||
parser.add_argument('--num-prompts', | ||
type=int, | ||
default=1, | ||
help='Number of prompts to run.') | ||
|
||
args = parser.parse_args() | ||
main(args) |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.