-
Notifications
You must be signed in to change notification settings - Fork 449
/
ParticleFilter.m
479 lines (412 loc) · 16.2 KB
/
ParticleFilter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
%ParticleFilter Particle filter class
%
% Monte-carlo based localisation for estimating vehicle pose based on
% odometry and observations of known landmarks.
%
% Methods::
% run run the particle filter
% plot_xy display estimated vehicle path
% plot_pdf display particle distribution
%
% Properties::
% robot reference to the robot object
% sensor reference to the sensor object
% history vector of structs that hold the detailed information from
% each time step
% nparticles number of particles used
% x particle states; nparticles x 3
% weight particle weights; nparticles x 1
% x_est mean of the particle population
% std standard deviation of the particle population
% Q covariance of noise added to state at each step
% L covariance of likelihood model
% w0 offset in likelihood model
% dim maximum xy dimension
%
% Example::
%
% Create a landmark map
% map = PointMap(20);
% and a vehicle with odometry covariance and a driver
% W = diag([0.1, 1*pi/180].^2);
% veh = Vehicle(W);
% veh.add_driver( RandomPath(10) );
% and create a range bearing sensor
% R = diag([0.005, 0.5*pi/180].^2);
% sensor = RangeBearingSensor(veh, map, R);
%
% For the particle filter we need to define two covariance matrices. The
% first is is the covariance of the random noise added to the particle
% states at each iteration to represent uncertainty in configuration.
% Q = diag([0.1, 0.1, 1*pi/180]).^2;
% and the covariance of the likelihood function applied to innovation
% L = diag([0.1 0.1]);
% Now construct the particle filter
% pf = ParticleFilter(veh, sensor, Q, L, 1000);
% which is configured with 1000 particles. The particles are initially
% uniformly distributed over the 3-dimensional configuration space.
%
% We run the simulation for 1000 time steps
% pf.run(1000);
% then plot the map and the true vehicle path
% map.plot();
% veh.plot_xy('b');
% and overlay the mean of the particle cloud
% pf.plot_xy('r');
% We can plot the standard deviation against time
% plot(pf.std(1:100,:))
% The particles are a sampled approximation to the PDF and we can display
% this as
% pf.plot_pdf()
%
% Acknowledgement::
%
% Based on code by Paul Newman, Oxford University,
% http://www.robots.ox.ac.uk/~pnewman
%
% Reference::
%
% Robotics, Vision & Control,
% Peter Corke,
% Springer 2011
%
% See also Vehicle, RandomPath, RangeBearingSensor, PointMap, EKF.
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
%note this is not coded efficiently but rather to make the ideas clear
%all loops should be vectorized but that gets a little matlab-speak intensive
%and may obliterate the elegance of a particle filter....
classdef ParticleFilter < handle
%TODO
% x_est should be a weighted mean
% std should be a weighted std (x-mean)' W (x-mean) ???
properties
robot
sensor
nparticles
x % particle states; nparticles x 3
weight % particle weights; nparticles x 1
x_est % mean of the particle population
std % standard deviation of the particle population
Q % covariance of noise added to state at each step
L % covariance of likelihood model
history
keephistory
dim % maximum xy dimension
h % graphics handle for particles
randstream
seed0
w0
x0 % initial particle distribution
anim
end % properties
methods
function pf = ParticleFilter(robot, sensor, Q, L, np, varargin)
%ParticleFilter.ParticleFilter Particle filter constructor
%
% PF = ParticleFilter(VEHICLE, SENSOR, Q, L, NP, OPTIONS) is a particle
% filter that estimates the state of the VEHICLE with a landmark sensor
% SENSOR. Q is the covariance of the noise added to the particles
% at each step (diffusion), L is the covariance used in the
% sensor likelihood model, and NP is the number of particles.
%
% Options::
% 'verbose' Be verbose.
% 'private' Use private random number stream.
% 'reset' Reset random number stream.
% 'seed',S Set the initial state of the random number stream. S must
% be a proper random number generator state such as saved in
% the seed0 property of an earlier run.
% 'nohistory' Don't save history.
% 'x0' Initial particle states (Nx3)
%
% Notes::
% - ParticleFilter subclasses Handle, so it is a reference object.
% - If initial particle states not given they are set to a uniform
% distribution over the map, essentially the kidnapped robot problem
% which is quite unrealistic.
% - Initial particle weights are always set to unity.
% - The 'private' option creates a private random number stream for the
% methods rand, randn and randi. If not given the global stream is used.
%
%
% See also Vehicle, Sensor, RangeBearingSensor, PointMap.
pf.robot = robot;
pf.sensor = sensor;
pf.Q = Q;
pf.L = L;
pf.nparticles = np;
pf.dim = sensor.map.dim;
pf.history = [];
pf.x = [];
pf.weight = [];
pf.w0 = 0.05;
pf.x0 = [];
opt.private = false;
opt.reset = false;
opt.seed = [];
opt.history = true;
opt.x0 = [];
opt = tb_optparse(opt, varargin);
pf.keephistory = opt.history;
% create a private random number stream if required
if opt.private
pf.randstream = RandStream.create('mt19937ar');
else
pf.randstream = RandStream.getGlobalStream();
end
% reset the random number stream if required
if opt.reset
pf.randstream.reset();
end
% return the random number stream to known state if required
if ~isempty(opt.seed)
set(pf.randstream.set(opt.seed));
end
% save the current state in case it later turns out to give interesting results
pf.seed0 = pf.randstream.State;
if opt.x0
pf.x0 = opt.x0;
end
end
function init(pf)
%ParticleFilter.init Initialize the particle filter
%
% PF.init() initializes the particle distribution and clears the
% history.
%
% Notes::
% - If initial particle states were given to the constructor the states are
% set to this value, else a random distribution over the map is used.
% - Invoked by the run() method.
pf.robot.init();
pf.history = [];
if pf.x0
pf.x = pf.x0; % assign initial particle states
else
% create initial particle distribution as uniformly randomly distributed
% over the map area and heading angles
pf.x = (2*pf.rand([pf.nparticles,3]) - 1) * diag([pf.dim, pf.dim, pi]);
end
pf.weight = ones(pf.nparticles, 1);
pf.x_est = [];
pf.std = [];
end
function run(pf, niter, varargin)
%ParticleFilter.run Run the particle filter
%
% PF.run(N, OPTIONS) runs the filter for N time steps.
%
% Options::
% 'noplot' Do not show animation.
% 'movie',M Create an animation movie file M
%
% Notes::
% - All previously estimated states and estimation history is
% cleared.
opt.plot = true;
opt.movie = [];
opt = tb_optparse(opt, varargin);
anim = Animate(opt.movie);
pf.init();
pf.sensor.map.plot();
a = axis;
a(5:6) = [-pi pi];
axis(a)
zlabel('heading (rad)');
% display the initial particles
pf.h = plot3(pf.x(:,1), pf.x(:,2), pf.x(:,3), 'g.');
set(pf.h, 'Tag', 'particles');
pf.robot.plot();
% iterate over time
for i=1:niter
pf.step(opt);
anim.add();
end
anim.close();
end
function step(pf, opt)
%fprintf('---- step\n');
odo = pf.robot.step(); % move the robot
% update the particles based on odometry
pf.predict(odo);
% get a sensor reading
[z,jf] = pf.sensor.reading();
if ~isnan(jf)
pf.observe(z, jf);
%fprintf(' observe beacon %d\n', jf);
pf.select();
end
% our estimate is simply the mean of the particles
mn = mean(pf.x);
pf.x_est = [pf.x_est; mn];
s = std(pf.x);
% std is more complex for angles, need to account for 2pi wrap
s(3) = sqrt(sum(angdiff(pf.x(:,3), mn(3)).^2)) / (pf.nparticles-1);
pf.std = [pf.std; s];
% display the updated particles
set(pf.h, 'Xdata', pf.x(:,1), 'Ydata', pf.x(:,2), 'Zdata', pf.x(:,3));
if opt.plot
pf.robot.plot();
drawnow
end
if ~isempty(pf.anim)
pf.anim.add();
end
if pf.keephistory
hist = [];
hist.x_est = pf.x;
hist.w = pf.weight;
pf.history = [pf.history hist];
end
end
function plot_pdf(pf)
%ParticleFilter.plot_pdf Plot particles as a PDF
%
% PF.plot_pdf() plots a sparse PDF as a series of vertical line
% segments of height equal to particle weight.
clf
hold on
for p = 1:pf.nparticles
x = pf.x(p,:);
plot3([x(1) x(1)], [x(2) x(2)], [0 pf.weight(p)], 'r');
plot3([x(1) x(1)], [x(2) x(2)], [0 pf.weight(p)], 'k.', 'MarkerSize', 12);
end
grid on
xyzlabel
zlabel('particle weight')
view(30,60);
rotate3d on
end
function plot_xy(pf, varargin)
%ParticleFilter.plot_xy Plot vehicle position
%
% PF.plot_xy() plots the estimated vehicle path in the xy-plane.
%
% PF.plot_xy(LS) as above but the optional line style arguments
% LS are passed to plot.
plot(pf.x_est(:,1), pf.x_est(:,2), varargin{:});
end
function display(pf)
%ParticleFilter.display Display status of particle filter object
%
% PF.display() displays the state of the ParticleFilter object in
% human-readable form.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a ParticleFilter object and the command has no trailing
% semicolon.
%
% See also ParticleFilter.char.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(pf) );
end % display()
function s = char(pf)
%ParticleFilter.char Convert to string
%
% PF.char() is a string representing the state of the ParticleFilter
% object in human-readable form.
%
% See also ParticleFilter.display.
s = sprintf('ParticleFilter object: %d particles', pf.nparticles);
if ~isempty(pf.robot)
s = char(s, char(pf.robot) );
end
if ~isempty(pf.sensor)
s = char(s, char(pf.sensor));
end
s = char(s, ['Q: ' mat2str(pf.Q, 3)] );
s = char(s, ['L: ' mat2str(pf.L, 3)] );
s = char(s, sprintf('w0: %g', pf.w0) );
end
end % methods
methods(Access=protected)
% step 2
% update the particle state based on odometry and a random perturbation
function predict(pf, odo)
% Straightforward code:
%
% for i=1:pf.nparticles
% x = pf.robot.f( pf.x(i,:), odo)' + sqrt(pf.Q)*pf.randn(3,1);
% x(3) = angdiff(x(3));
% pf.x(i,:) = x;
%
% Vectorized code:
randvec = pf.randn(pf.nparticles,3);
pf.x = pf.robot.f( pf.x, odo) + randvec*sqrt(pf.Q);
pf.x(:,3) = angdiff(pf.x(:,3));
end
% step 3
% predict observation and score the particles
function observe(pf, z, jf)
% Straightforward code:
%
% for p = 1:pf.nparticles
% % what do we expect observation to be for this particle?
% % use the sensor model h(.)
% z_pred = pf.sensor.h( pf.x(p,:), jf);
%
% % how different is it
% innov(1) = z(1) - z_pred(1);
% innov(2) = angdiff(z(2), z_pred(2));
%
% % get likelihood (new importance). Assume Gaussian but any PDF works!
% % If predicted obs is very different from actual obs this score will be low
% % ie. this particle is not very good at predicting the observation.
% % A lower score means it is less likely to be selected for the next generation...
% % The weight is never zero.
% pf.weight(p) = exp(-0.5*innov'*inv(pf.L)*innov) + 0.05;
% end
%
% Vectorized code:
invL = inv(pf.L);
z_pred = pf.sensor.h( pf.x, jf);
z_pred(:,1) = z(1) - z_pred(:,1);
z_pred(:,2) = angdiff(z(2), z_pred(:,2));
LL = -0.5*[invL(1,1); invL(2,2); 2*invL(1,2)];
e = [z_pred(:,1).^2 z_pred(:,2).^2 z_pred(:,1).*z_pred(:,2)]*LL;
pf.weight = exp(e) + pf.w0;
end
% step 4
% select particles based on their weights
function select(pf)
% particles with large weights will occupy a greater percentage of the
% y axis in a cummulative plot
CDF = cumsum(pf.weight)/sum(pf.weight);
% so randomly (uniform) choosing y values is more likely to correspond to
% better particles...
iSelect = pf.rand(pf.nparticles,1);
% find the particle that corresponds to each y value (just a look up)
iNextGeneration = interp1(CDF, 1:pf.nparticles, iSelect, 'nearest', 'extrap');
% copy selected particles for next generation..
pf.x = pf.x(iNextGeneration,:);
end
function r = rand(pf, varargin)
r = pf.randstream.rand(varargin{:});
end
function r = randn(pf, varargin)
r = pf.randstream.randn(varargin{:});
end
end % private methods
end