A simple python library to log your Machine Learning experiments.
-
Make sure that you have recent versions installed of:
- Python (version 3.6 or higher)
- Numpy (e.g.
pip install numpy
) - Pandas (e.g.
pip install pandas
)
-
Clone this repository, e.g.:
git clone https://github.com/parthatom/Logging.git
from Logging import Logger
import os
model_logger = Logger(df_path = data_path, create = False)
#Loop for various models
model_dir = "Path.to.model"
epoch_logger = Logger(df_path = os.path.join(data_path, model_dir, "epochs.csv"), create = False)
batch_logger = Logger(df_path = os.path.join(data_path, model_dir,"batches,csv"), create = False)
# #Epoch Loop
# #Minibatch Loop
batch_logger.log("batch_train_loss", batch_loss)
batch_logger.log("batch_accuracy", batch_accuracy)
batch_logger.log("batch_val_loss", batch_val_loss)
batch_logger.log("batch_val_accuracy", batch_val_accuracy)
batch_logger.next()
epoch_logger.log("train_loss", loss)
epoch_logger.log("accuracy", accuracy)
epoch_logger.log("val_loss", val_loss)
epoch_logger.log("val_accuracy", val_accuracy)
epoch_logger.next()
model_logger.log('key', value)
batch_logger.save()
epoch_logger.save()
model_logger.next()
model_logger.save()
Stores data in a pandas compatible csv file. Pandas enables you to view and vizualise model results and experiments easily.