This is the code repository for the 3D Semantic Novelty Detection via Large-Scale Pre-Trained Models
pip install -r requirements.txt
if you want to perform experiments with EPN check here for installing the backbone modules
For downloading the 3dos dataset follow the instructions at the 3dos repository
The main Uni3D checkpoints reported in the paper can be retrieved here
The main OpenShape checkpoints reported in the paper are automatically downloaded from HuggingFace
Check here for other OpenShape models and here for other Uni3D models.
The EPN model trained on objaverse can be found here
To launch 3DSend experiments use the send3d_launcher.py file
python send3d_launcher.py --in_dataset Syn2Real_SR2 \
--data_path /data/datasets/3D_OS_release_data \
--model_zoo_path ./checkpoints \
--backbone OpenShape_Bert \
--layer ppat.transformer.layers.11.2 \
--num_points 2048 \
--sample_rate 1 \
--normalize
python send3d_launcher.py --in_dataset Syn2Real_SR2 \
--data_path /data/datasets/3D_OS_release_data \
--model_zoo_path ./checkpoints \
--backbone uni3d-b \
--layer point_encoder.visual.blocks.11.mlp.fc2 \
--num_points 2048 \
--sample_rate 1 \
--normalize
--in_dataset
is used to choose the in-distribution dataset, check ood_datasets.py for possible choices
--data_path
defines the location to the 3DOS dataset
--model_zoo_path
defines the location where to automatically load checkpoints (avaiable only for uni3d)
--layer
defines the extraction layer
--num_points
defines the number of points present in the loaded pointclouds
--sample_rate
sets the coreset subsamling percentage, 1 means no subsampling
--normalize
is used to set cosine embedding distance, otherwise l2 distance is used
--checkpoint-path
specifies a checkpoint to be loaded manually, overwrites previous automatical loadings if specified
for more details use
python send3d_launcher.py --help
3D Send isn't bound to network architecture or pretraining, other networks can be added to the network list here
Currently under review
@ARTICLE{Rabino3dsend,
author={Rabino, Paolo and Alliegro, Antonio and Tommasi, Tatiana},
journal={IEEE Access},
title={3D Semantic Novelty Detection via Large-Scale Pre-Trained Models},
year={2024},
volume={12},
pages={135352-135361}}