Skip to content

BUG: broadcasting listlike values in Series.__setitem__ GH#44265 #44275

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Nov 5, 2021
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
BUG: Series[int8][:3] = range(3) unnecessary upcasting to int64
  • Loading branch information
jbrockmendel committed Nov 1, 2021
commit d65adc7aaaed20a552bcae0a0bd059bb03e37b66
15 changes: 15 additions & 0 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -2197,6 +2197,9 @@ def can_hold_element(arr: ArrayLike, element: Any) -> bool:
tipo = maybe_infer_dtype_type(element)

if dtype.kind in ["i", "u"]:
if isinstance(element, range):
return _dtype_can_hold_range(element, dtype)

if tipo is not None:
if tipo.kind not in ["i", "u"]:
if is_float(element) and element.is_integer():
Expand All @@ -2209,6 +2212,7 @@ def can_hold_element(arr: ArrayLike, element: Any) -> bool:
# i.e. nullable IntegerDtype; we can put this into an ndarray
# losslessly iff it has no NAs
return not element._mask.any()

return True

# We have not inferred an integer from the dtype
Expand Down Expand Up @@ -2249,3 +2253,14 @@ def can_hold_element(arr: ArrayLike, element: Any) -> bool:
return isinstance(element, bytes) and len(element) <= dtype.itemsize

raise NotImplementedError(dtype)


def _dtype_can_hold_range(rng: range, dtype: np.dtype) -> bool:
"""
maybe_infer_dtype_type infers to int64 (and float64 for very large endpoints),
but in many cases a range can be held by a smaller integer dtype.
Check if this is one of those cases.
"""
if not len(rng):
return True
return np.can_cast(rng[0], dtype) and np.can_cast(rng[-1], dtype)
41 changes: 41 additions & 0 deletions pandas/tests/dtypes/cast/test_can_hold_element.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import numpy as np

from pandas.core.dtypes.cast import can_hold_element


def test_can_hold_element_range(any_int_numpy_dtype):
dtype = np.dtype(any_int_numpy_dtype)
arr = np.array([], dtype=dtype)

rng = range(2, 127)
assert can_hold_element(arr, rng)

# negatives -> can't be held by uint dtypes
rng = range(-2, 127)
if dtype.kind == "i":
assert can_hold_element(arr, rng)
else:
assert not can_hold_element(arr, rng)

rng = range(2, 255)
if dtype == "int8":
assert not can_hold_element(arr, rng)
else:
assert can_hold_element(arr, rng)

rng = range(-255, 65537)
if dtype.kind == "u":
assert not can_hold_element(arr, rng)
elif dtype.itemsize < 4:
assert not can_hold_element(arr, rng)
else:
assert can_hold_element(arr, rng)

# empty
rng = range(-(10 ** 10), -(10 ** 10))
assert len(rng) == 0
# assert can_hold_element(arr, rng)

rng = range(10 ** 10, 10 ** 10)
assert len(rng) == 0
assert can_hold_element(arr, rng)
41 changes: 41 additions & 0 deletions pandas/tests/series/indexing/test_setitem.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
import numpy as np
import pytest

from pandas.core.dtypes.common import is_list_like

from pandas import (
Categorical,
DataFrame,
Expand Down Expand Up @@ -622,6 +624,16 @@ def test_mask_key(self, obj, key, expected, val, indexer_sli):
tm.assert_series_equal(obj, expected)

def test_series_where(self, obj, key, expected, val, is_inplace):
if is_list_like(val) and len(val) < len(obj):
# Series.where is not valid here
if isinstance(val, range):
return

# FIXME: The remaining TestSetitemDT64IntoInt that go through here
# are relying on technically-incorrect behavior because Block.where
# uses np.putmask instead of expressions.where in those cases,
# which has different length-checking semantics.

mask = np.zeros(obj.shape, dtype=bool)
mask[key] = True

Expand Down Expand Up @@ -973,6 +985,35 @@ def expected(self, obj, val):
return Series(idx)


class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents):
# Setting a range with sufficiently-small integers into small-itemsize
# integer dtypes should not need to upcast

@pytest.fixture
def obj(self, any_int_numpy_dtype):
dtype = np.dtype(any_int_numpy_dtype)
ser = Series(range(5), dtype=dtype)
return ser

@pytest.fixture
def val(self):
return range(2, 4)

@pytest.fixture
def key(self):
return slice(0, 2)

@pytest.fixture
def expected(self, any_int_numpy_dtype):
dtype = np.dtype(any_int_numpy_dtype)
exp = Series([2, 3, 2, 3, 4], dtype=dtype)
return exp

@pytest.fixture
def inplace(self):
return True


def test_setitem_int_as_positional_fallback_deprecation():
# GH#42215 deprecated falling back to positional on __setitem__ with an
# int not contained in the index
Expand Down