Skip to content

PERF/BUG: improve factorize for datetimetz #13750

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 24, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions asv_bench/benchmarks/algorithms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import numpy as np
import pandas as pd


class algorithm(object):
goal_time = 0.2

def setup(self):
N = 100000
self.int = pd.Int64Index(np.arange(N).repeat(5))
self.float = pd.Float64Index(np.random.randn(N).repeat(5))

def time_int_factorize(self):
self.int.factorize()

def time_float_factorize(self):
self.int.factorize()
16 changes: 16 additions & 0 deletions asv_bench/benchmarks/period.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,22 @@ def time_period_index(self):
PeriodIndex(date_range('1985', periods=1000).to_pydatetime(), freq='D')


class period_setitem(object):
goal_time = 0.2

def setup(self):
self.N = 100000
self.rng = date_range(start='1/1/2000', periods=self.N, freq='T')
if hasattr(Series, 'convert'):
Series.resample = Series.convert
self.ts = Series(np.random.randn(self.N), index=self.rng)
self.rng = period_range(start='1/1/1990', freq='S', periods=20000)
self.df = DataFrame(index=range(len(self.rng)))

def time_period_setitem(self):
self.df['col'] = self.rng


class period_algorithm(object):
goal_time = 0.2

Expand Down
20 changes: 10 additions & 10 deletions asv_bench/benchmarks/timeseries.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,20 +218,20 @@ def time_dti_reset_index_tz(self):
self.df.reset_index()


class period_setitem(object):
class datetime_algorithm(object):
goal_time = 0.2

def setup(self):
self.N = 100000
self.rng = date_range(start='1/1/2000', periods=self.N, freq='T')
if hasattr(Series, 'convert'):
Series.resample = Series.convert
self.ts = Series(np.random.randn(self.N), index=self.rng)
self.rng = period_range(start='1/1/1990', freq='S', periods=20000)
self.df = DataFrame(index=range(len(self.rng)))
N = 100000
self.dti = pd.date_range('2011-01-01', freq='H', periods=N).repeat(5)
self.dti_tz = pd.date_range('2011-01-01', freq='H', periods=N,
tz='Asia/Tokyo').repeat(5)

def time_dti_factorize(self):
self.dti.factorize()

def time_period_setitem(self):
self.df['col'] = self.rng
def time_dti_tz_factorize(self):
self.dti_tz.factorize()


class timeseries_1min_5min_mean(object):
Expand Down
3 changes: 3 additions & 0 deletions doc/source/whatsnew/v0.19.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -650,6 +650,8 @@ Performance Improvements
- Improved performance of ``Index.difference`` (:issue:`12044`)
- Improved performance of datetime string parsing in ``DatetimeIndex`` (:issue:`13692`)
- Improved performance of hashing ``Period`` (:issue:`12817`)
- Improved performance of ``factorize`` of datetime with timezone (:issue:`13750`)



.. _whatsnew_0190.bug_fixes:
Expand Down Expand Up @@ -735,6 +737,7 @@ Bug Fixes
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN's from formatting (:issue:`11981`)
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
- Clean some compile time warnings in datetime parsing (:issue:`13607`)
- Bug in ``factorize`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13750`)

- Bug in ``Series`` comparison operators when dealing with zero dim NumPy arrays (:issue:`13006`)
- Bug in ``groupby`` where ``apply`` returns different result depending on whether first result is ``None`` or not (:issue:`12824`)
Expand Down
5 changes: 2 additions & 3 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None):
is_datetimetz_type = is_datetimetz(values)
if is_datetimetz_type:
values = DatetimeIndex(values)
vals = values.tz_localize(None)
vals = values.asi8

is_datetime = is_datetime64_dtype(vals)
is_timedelta = is_timedelta64_dtype(vals)
Expand All @@ -313,8 +313,7 @@ def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None):

if is_datetimetz_type:
# reset tz
uniques = DatetimeIndex(uniques.astype('M8[ns]')).tz_localize(
values.tz)
uniques = values._shallow_copy(uniques)
elif is_datetime:
uniques = uniques.astype('M8[ns]')
elif is_timedelta:
Expand Down
31 changes: 31 additions & 0 deletions pandas/tseries/tests/test_timeseries.py
Original file line number Diff line number Diff line change
Expand Up @@ -3750,6 +3750,37 @@ def test_factorize(self):
self.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)

def test_factorize_tz(self):
# GH 13750
for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']:
base = pd.date_range('2016-11-05', freq='H', periods=100, tz=tz)
idx = base.repeat(5)

exp_arr = np.arange(100).repeat(5)

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
self.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(res, base)

def test_factorize_dst(self):
# GH 13750
idx = pd.date_range('2016-11-06', freq='H', periods=12,
tz='US/Eastern')

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
self.assert_numpy_array_equal(arr, np.arange(12))
tm.assert_index_equal(res, idx)

idx = pd.date_range('2016-06-13', freq='H', periods=12,
tz='US/Eastern')

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
self.assert_numpy_array_equal(arr, np.arange(12))
tm.assert_index_equal(res, idx)

def test_slice_with_negative_step(self):
ts = Series(np.arange(20),
date_range('2014-01-01', periods=20, freq='MS'))
Expand Down