Skip to content

BUG: inconsistent treatment of overflows between groupby.sum() and groupby.apply(lambda: _grp: _grp.sum()) and DataFrame.resample #60303

Open
@vasil-pashov

Description

@vasil-pashov

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd
s = pd.Series([1.797693e+308, 1.797693e+308, 1.797693e+308])
s.groupby([1, 1, 1]).sum()

1   NaN
dtype: float64

s.groupby([1, 1, 1]).apply(lambda _grp: _grp.sum())
1    inf
dtype: float64

df = pd.DataFrame({"col": [1.797693e+308, 1.797693e+308, 1.797693e+308]}, index=pd.DatetimeIndex([pd.Timestamp("1970-01-01 00:00:00.000000000"), pd.Timestamp("1970-01-01 00:00:00.000000001"), pd.Timestamp("1970-01-01 00:00:00.000000002")]))
df.resample('1min').agg(col=("col", "sum"))

col
1970-01-01	NaN

Issue Description

I was initially doing resampling with some large numbers and saw that when an overflow happens during a sum aggregator the float result becomes NaN instead of inf. I did some digging and I believe the problem is similar to #53606 so I did some testing with groupby similar to what was done in #53606.

This behavior also contradicts what pure python sum and numpy.sum methods do as they both return inf.

Expected Behavior

Return infinity (or -infinity) in case of overflow.

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.11.9
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.26100
machine : AMD64
processor : Intel64 Family 6 Model 186 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252

pandas : 2.2.3
numpy : 1.26.4
pytz : 2024.2
dateutil : 2.9.0.post0
pip : 24.3.1
Cython : None
sphinx : None
IPython : 8.29.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : 6.72.4
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 17.0.0
pyreadstat : None
pytest : 8.3.3
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2024.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions