Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
Hi, so it seems some interaction between copy-on-write and .attrs data leads to extremely slow performance, at least with custom aggregations. In the below code, the timed aggregations all perform identical in v2.1. But in v2.2, the last one, with custom .attrs data and copy-on-write enabled, is about 10x slower. Using my original dataset, which I cannot share, but which is simply larger in both dimensions, the result was even more extreme, being almost 50x slower (from less than a second to 40s).
import numpy as np
import pandas as pd
from sklearn import datasets
from pandas import options as pdopt
print(f"{pd.__version__=}")
X, y = datasets.fetch_covtype(return_X_y=True, as_frame=True)
X["group"] = np.random.choice(range(20_000), size=len(X))
print("\nExecution times with and without metadata before setting copy_on_write to 'warn'")
%timeit -n1 -r1 X.groupby("group").Elevation.apply(lambda ser: (ser >= 3000).sum() / len(ser))
X.attrs["metadata"] = {col: {"hello": {"world": "foobar"}} for col in X.columns}
%timeit -n1 -r1 X.groupby("group").Elevation.apply(lambda ser: (ser >= 3000).sum() / len(ser))
pdopt.mode.copy_on_write = True #"warn"
X, y = datasets.fetch_covtype(return_X_y=True, as_frame=True)
X["group"] = np.random.choice(range(20_000), size=len(X))
print("\nExecution times with and without metadata after setting copy_on_write to 'warn'")
%timeit -n1 -r1 X.groupby("group").Elevation.apply(lambda ser: (ser >= 3000).sum() / len(ser))
X.attrs["metadata"] = {col: {"hello": {"world": "foobar"}} for col in X.columns}
%timeit -n1 -r1 X.groupby("group").Elevation.apply(lambda ser: (ser >= 3000).sum() / len(ser))
The output:
pd.__version__='2.2.3'
Execution times with and without metadata before setting copy_on_write to 'warn'
661 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
667 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
Execution times with and without metadata after setting copy_on_write to 'warn'
671 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
5.22 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.10.15
python-bits : 64
OS : Darwin
OS-release : 24.0.0
Version : Darwin Kernel Version 24.0.0: Tue Sep 24 23:36:26 PDT 2024; root:xnu-11215.1.12~1/RELEASE_ARM64_T8103
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 2.2.3
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0
pip : 24.2
Cython : 0.29.37
sphinx : 8.1.3
IPython : 8.28.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.9.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : 5.3.0
matplotlib : 3.9.2
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : 0.23.0
psycopg2 : 2.9.10
pymysql : 1.4.6
pyarrow : 16.1.0
pyreadstat : 1.2.7
pytest : 8.3.3
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
sqlalchemy : 2.0.36
tables : None
tabulate : None
xarray : None
xlrd : 2.0.1
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2024.2
qtpy : None
pyqt5 : None
Prior Performance
pd.__version__='2.1.4'
Execution times with and without metadata before setting copy_on_write to 'warn'
703 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
695 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
Execution times with and without metadata after setting copy_on_write to 'warn'
694 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
691 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)