Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame({"X": ["B", "A", "A", "B"], "Y": [4, 1, 3, -1]})
df.groupby("X", sort=False).value_counts(sort=False) # works as expected
df.groupby("X", sort=True).value_counts(sort=False) # column "Y" does not match original order
Issue Description
(possibly related to #55951)
When a GroupBy.value_counts operation is performed, the order of rows within the non-grouping columns does not respect the order of elements in the original frame.
In this example, with value_counts(sort=False) I would expect the row B 4 1
to appear above B -1 1
, as that would correspond go their order in the original frame.
>>> df = pd.DataFrame({"X": ["B", "A", "A", "B"], "Y": [4, 1, 3, -1]})
>>> df.groupby("X", sort=False).value_counts(sort=False)
X Y
A 1 1
3 1
B -1 1
4 1
Name: count, dtype: int64
When the groupby has sort=False set, this order is respected.
>>> df.groupby("X", sort=False).value_counts(sort=False)
X Y
B 4 1
A 1 1
3 1
B -1 1
Name: count, dtype: int64
Expected Behavior
Calling groupby(sort=True).value_counts(sort=False) should preserve the order of members within groups, or documentation should be changed to reflect this.
Installed Versions
INSTALLED VERSIONS
commit : 67a58cd
python : 3.11.7
python-bits : 64
OS : Darwin
OS-release : 23.5.0
Version : Darwin Kernel Version 23.5.0: Wed May 1 20:14:38 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6020
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 3.0.0.dev0+1239.g67a58cddc2
numpy : 2.1.0.dev0+git20240720.d489c83
pytz : 2024.1
dateutil : 2.9.0.post0
pip : 23.3.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2023.4
qtpy : None
pyqt5 : None