Skip to content

PERF: pd.BooleanDtype in row operations is still very slow #56903

Open
@Alexia-I

Description

@Alexia-I

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

The performance issue is the same as #52016. I assume it may be caused by some dependency missing but i installed some accelerating dependency like numba and pyarrow and the time is still larger than 10 seconds. @rhshadrach

import pandas as pd
import numpy as np

shape = 250_000, 100
mask = pd.DataFrame(np.random.randint(0, 1, size=shape))


np_mask = mask.astype(bool)
pd_mask = mask.astype(pd.BooleanDtype())

assert all(isinstance(dtype, pd.BooleanDtype) for dtype in pd_mask.dtypes)
assert all(isinstance(dtype, np.dtype) for dtype in np_mask.dtypes)
# column operations are not that much slower
%timeit pd_mask.any(axis=0) 
%timeit np_mask.any(axis=0)
# using pandas.BooleanDtype back end for ROW operations is MUCH SLOWER
%timeit pd_mask.any(axis=1)
%timeit np_mask.any(axis=1)

13.1 ms ± 522 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
5.7 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
10.2 s ± 1.41 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
7.74 ms ± 40.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Installed Versions

INSTALLED VERSIONS

commit : a671b5a
python : 3.9.18.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-88-generic
Version : #98~20.04.1-Ubuntu SMP Mon Oct 9 16:43:45 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.1.4
numpy : 1.26.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3.1
Cython : 3.0.8
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.18.1
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.12.2
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.4
qtpy : None
pyqt5 : None

Prior Performance

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    NA - MaskedArraysRelated to pd.NA and nullable extension arraysNeeds InfoClarification about behavior needed to assess issuePerformanceMemory or execution speed performanceReduction Operationssum, mean, min, max, etc.

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions