Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
import pyarrow as pa
s1 = pd.Series([1,2,3], dtype=np.int32)
assert isinstance(s1[0], np.int32) # ✅
s2 = pd.Series([1,2,3], dtype="int32[pyarrow]")
assert isinstance(s2[0], pa.lib.Int32Scalar) # ❌ (actually: python int)
Issue Description
When using the numpy
backend, we get numpy
scalars. When using the pyarrow
backend, we get python
scalars?
Expected Behavior
It's a fundamental expectation of vector data that __getitem__
has a signature like (self: Vector[T], index: int) -> T
. So I'd expect to get pyarrow
scalars when using the pyarrow
backend. In any case, there should be consistent behavior between the different backends.
Installed Versions
INSTALLED VERSIONS
commit : 2a953cf
python : 3.11.6.final.0
python-bits : 64
OS : Linux
OS-release : 6.2.0-36-generic
Version : #37~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Oct 9 15:34:04 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.3
numpy : 1.26.1
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3.1
Cython : 3.0.4
pytest : 7.4.3
hypothesis : None
sphinx : 7.2.6
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : 1.4.6
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.16.1
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : 2023.10.0
fsspec : 2023.10.0
gcsfs : None
matplotlib : 3.8.0
numba : None
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 13.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
sqlalchemy : 1.4.49
tables : 3.9.1
tabulate : 0.9.0
xarray : 2023.10.1
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None