Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
from datetime import datetime
from pandas import DataFrame
date = datetime.now()
data = {
'date1': date,
'date2': [date, date],
}
df = DataFrame(data)
print(df.dtypes)
Issue Description
The date columns are not the same type (The case in 2.1.0).
date1 datetime64[us]
date2 datetime64[ns]
Expected Behavior
The date columns are the same type (The case in 2.0.3).
date1 datetime64[ns]
date2 datetime64[ns]
Installed Versions
pandas : 2.1.0
numpy : 1.25.2
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : None
pytest : 7.4.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.1.2
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 2.0.20
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None