We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
import pandas as pd import numpy as np a = np.random.randint(1, 20, 9).reshape(3,3) p = pd.DataFrame(a, index=['a', 'b', 'c'], columns=['x', 'y', 'z']) p.sum(axis=None) >>> x 42 y 24 z 20 dtype: int64
According to the documentation of DataFrame.sum using axis=None should apply the aggregation across both axes. https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sum.html
This is not the case in the given example.
returns the aggregation across both axes, that is, return 86
commit : 37ea63d python : 3.10.6.final.0 python-bits : 64 OS : Linux OS-release : 5.13.0-1033-gcp Version : #40~20.04.1-Ubuntu SMP Tue Jun 14 00:44:12 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : C.UTF-8 LANG : en_US.UTF-8 LOCALE : en_US.UTF-8
pandas : 2.0.1 numpy : 1.22.1 pytz : 2023.3 dateutil : 2.8.2 setuptools : 67.6.1 pip : 23.1 Cython : 0.29.30 pytest : 7.1.3 hypothesis : 6.72.0 sphinx : 6.1.3 blosc : None feather : None xlsxwriter : 3.0.8 lxml.etree : 4.8.0 html5lib : 1.1 pymysql : None psycopg2 : 2.9.3 jinja2 : 3.1.2 IPython : 7.34.0 pandas_datareader: 0.10.0 bs4 : 4.8.2 bottleneck : 1.3.2 brotli : 1.0.9 fastparquet : None fsspec : 2022.5.0 gcsfs : 2022.5.0 matplotlib : 3.6.3 numba : 0.56.4 numexpr : 2.8.4 odfpy : None openpyxl : 3.0.9 pandas_gbq : 0.19.1 pyarrow : 10.0.1 pyreadstat : 1.1.9 pyxlsb : None s3fs : None scipy : 1.10.1 snappy : None sqlalchemy : 1.4.39 tables : 3.7.0 tabulate : 0.8.10 xarray : 2022.6.0 xlrd : 2.0.1 zstandard : None tzdata : 2023.3 qtpy : 2.1.0 pyqt5 : None
The text was updated successfully, but these errors were encountered:
xref #52042
Sorry, something went wrong.
take
Closed by #52042
Until this date, this feature is depracated by looking at #52042 commits, will it be available in future releases or am I wrong?
NikolayBoev
No branches or pull requests
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
According to the documentation of DataFrame.sum using axis=None should apply the aggregation across both axes.
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sum.html
This is not the case in the given example.
Expected Behavior
returns the aggregation across both axes, that is, return 86
Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.10.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.13.0-1033-gcp
Version : #40~20.04.1-Ubuntu SMP Tue Jun 14 00:44:12 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : C.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.1
numpy : 1.22.1
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 23.1
Cython : 0.29.30
pytest : 7.1.3
hypothesis : 6.72.0
sphinx : 6.1.3
blosc : None
feather : None
xlsxwriter : 3.0.8
lxml.etree : 4.8.0
html5lib : 1.1
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.1.2
IPython : 7.34.0
pandas_datareader: 0.10.0
bs4 : 4.8.2
bottleneck : 1.3.2
brotli : 1.0.9
fastparquet : None
fsspec : 2022.5.0
gcsfs : 2022.5.0
matplotlib : 3.6.3
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.9
pandas_gbq : 0.19.1
pyarrow : 10.0.1
pyreadstat : 1.1.9
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : 1.4.39
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.6.0
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : 2.1.0
pyqt5 : None
The text was updated successfully, but these errors were encountered: