Skip to content

BUG: DataFrame.loc with MultiIndex, unexpected increase of memory #52714

Open
@trendelkampschroer

Description

@trendelkampschroer

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

def make_data():
    dates = pd.date_range("2001", "2020")
    ids = [f"id_{i + 1}" for i in range(1000)]
    index = pd.MultiIndex.from_product([dates, ids], names=["date", "id"])
    columns = [f"col_{i + 1}" for i in range(10)]
    return pd.DataFrame(0.0, index=index, columns=columns)

if __name__ == "__main__":
    frame = make_data()

    t0 = frame.index.get_level_values("date").min()
    end = pd.date_range("2001", "2020", freq="M")
    m = psutil.Process(os.getpid()).memory_info().rss

    print(f"Memory (resident set size): {m / (1024 * 1024):.2f} MB.")
    for t in end:
        frame.loc(axis=0)[t0:t, :]
        m = psutil.Process(os.getpid()).memory_info().rss
        print(f"Memory (resident set size): {m / (1024 * 1024):.2f} MB.")

Issue Description

Accessing or slicing a DataFrame with a MultiIndex that has two levels, the first with Timestamp entries and the second with string valued identifiers, shows an unexpected increase in memory usage.

One my machine, Apple M1, the initial memory usage (before the loc access) is roughly 700MB. During the for-loop the memory footprint increases to up to 7000MB.

Expected Behavior

Maximum memory footprint should not be increasing with the number of loop iterations. The maximum memory footprint should not exceed (roughly) twice the memory required for the (initial) frame.

Installed Versions

NSTALLED VERSIONS

commit : 478d340
python : 3.9.16.final.0
python-bits : 64
OS : Darwin
OS-release : 22.4.0
Version : Darwin Kernel Version 22.4.0: Mon Mar 6 20:59:28 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_GB.UTF-8

pandas : 2.0.0
numpy : 1.24.2
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 23.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugIndexingRelated to indexing on series/frames, not to indexes themselvesMultiIndexPerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions