Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
In [1]: pdf = pd.DataFrame({"idx": [0, 1, 2], "A": [1, 2, 3]}).set_index('idx')
[PYFLYBY] import pandas as pd
In [2]: pdf
Out[2]:
A
idx
0 1
1 2
2 3
In [3]: pdf.to_parquet("~/tmp/test.parquet")
In [4]: with pd.option_context("mode.dtype_backend", "pyarrow"):
...: df = pd.read_parquet("~/tmp/test.parquet")
...:
In [5]: df
Out[5]:
A idx
0 1 0
1 2 1
2 3 2
In [6]: pd.__version__
Out[6]: '2.1.0.dev0+93.g6bb8f73e75'
Issue Description
Roundtripping a DataFrame with an index to parquet and back under the options mode mode.type_backend='pyarrow'
causes indexes to be dropped.
Expected Behavior
I think pd.read_parquet should read from the schema (in particular pandas_metadata['index_columns']
to set the index. I don't think this is a bug in a lower level library like pyarrow since I think (?) indexes are a Pandas-specific abstraction. I assume there's some reason that setting the option mode skips pandas_compat._reconstruct_index
, but I can't figure it out.
This is what I expect to see instead:
In [16]: df = df.set_index('idx')
In [17]: df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 3 entries, 0 to 2
Data columns (total 1 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 A 3 non-null int64[pyarrow]
dtypes: int64[pyarrow](1)
memory usage: 50.0 bytes
In [18]: df.index
Out[18]: Index([0, 1, 2], dtype='int64[pyarrow]', name='idx')
Thanks for the help!
Installed Versions
INSTALLED VERSIONS
commit : 6bb8f73
python : 3.10.4.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.90.1-microsoft-standard-WSL2
Version : #1 SMP Fri Jan 27 02:56:13 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.0.dev0+93.g6bb8f73e75
numpy : 1.23.3
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 58.1.0
pip : 22.3
Cython : 0.29.32
pytest : 7.1.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.5.0
pandas_datareader: 0.10.0
bs4 : 4.11.1
bottleneck : 1.3.6
brotli : None
fastparquet : 0.8.3
fsspec : 2022.8.2
gcsfs : None
matplotlib : 3.5.3
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2022.8.2
scipy : 1.9.1
snappy : None
sqlalchemy : 1.4.41
tables : 3.8.0
tabulate : None
xarray : 2023.2.0
xlrd : 2.0.1
zstandard : 0.18.0
tzdata : None
qtpy : 2.3.0
pyqt5 : None