Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
The construction of a DatetimeIndex from a list of Timestamp with timezone appears to be slow when pandas 1.5 is installed in a virtual environment (venv) on Windows.
Here is a mininal script that run slowly on my machine:
# Pandas 1.5.0
python -m timeit -n 5 "import pandas as pd; x = pd.DatetimeIndex([pd.Timestamp.now(tz='Europe/Paris')] * 1000)"
# output: 5 loops, best of 5: 1.38 sec per loop
Remarks:
- Pandas 1.4.4 works fine on the same machine (see below)
- There is no issue on linux
- There is no issue if the timezone is UTC or None
- There is no issue when pandas 1.5 is installed in a conda environment on the same machine
- Here is the script I used to install the virtual environment
python -m venv venv .\venv\Scripts\activate pip install pandas
Installed Versions
INSTALLED VERSIONS
commit : 87cfe4e
python : 3.9.12.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22000
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : fr_FR.cp1252
pandas : 1.5.0
numpy : 1.23.3
pytz : 2022.4
dateutil : 2.8.2
setuptools : 58.1.0
pip : 22.0.4
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : None
Prior Performance
# Pandas 1.4.4
python -m timeit -n 5 "import pandas as pd; x = pd.DatetimeIndex([pd.Timestamp.now(tz='Europe/Paris')] * 1000)"
# output: 5 loops, best of 5: 2.25 msec per loop
# :0: UserWarning: The test results are likely unreliable. The worst time (176 msec) was more than four times slower than the best time (2.25 msec).