Skip to content

PERF: Calling df.agg([function]) is much slower than df.agg(function) when there are many columns and few rows. #45658

Open
@yakymp

Description

@yakymp

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

Calling df.agg([function]) is much slower than df.agg(function) when there are many columns and few rows.

I apologize if this is a known issue, I could not find a reference based on keywords that come to mind. Inspired by this SO question.

from timeit import timeit

import pandas as pd  # version 1.4.0
import numpy as np   # version 1.22.1

np.random.seed(0)

num_cols = 1000
df_ten_rows = pd.DataFrame(np.random.randint(0, 10, size=(10, num_cols)))
df_10k_rows = pd.DataFrame(np.random.randint(0, 10, size=(10_000, num_cols)))

assert pd.DataFrame(df_ten_rows.agg("sum").rename("sum")).T.equals(df_ten_rows.agg(["sum"]))
assert pd.DataFrame(df_10k_rows.agg("sum").rename("sum")).T.equals(df_10k_rows.agg(["sum"]))

setup = """
import pandas as pd  # version 1.4.0
import numpy as np   # version 1.22.1

np.random.seed(0)

num_cols = 1000
df_ten_rows = pd.DataFrame(np.random.randint(0, 10, size=(10, num_cols)))
df_10k_rows = pd.DataFrame(np.random.randint(0, 10, size=(10_000, num_cols)))
"""
number = 10 # nubmer of repetitions

codes = {
  "10 rows, agg on sum": 'pd.DataFrame(df_ten_rows.agg("sum").rename("sum")).T',
  "10 rows, agg on [sum]": 'df_ten_rows.agg(["sum"])',
  "10k rows, agg on sum": 'pd.DataFrame(df_10k_rows.agg("sum").rename("sum")).T',
  "10k rows, agg on [sum]": 'df_10k_rows.agg(["sum"])',
}

times = {
  description: timeit(code, setup=setup, number=number)/number 
  for description, code in codes.items()
  }

# {
#   '10 rows, agg on sum':    0.005952695199812297, 
#   '10 rows, agg on [sum]':  2.789351126600013, 
#   '10k rows, agg on sum':   0.018355781599893817, 
#   '10k rows, agg on [sum]': 2.341517233000195
# }

Installed Versions

INSTALLED VERSIONS

commit : bb1f651
python : 3.8.12.final.0
python-bits : 64
OS : Linux
OS-release : 5.11.0-1028-gcp
Version : #32~20.04.1-Ubuntu SMP Wed Jan 12 20:08:27 UTC 2022
machine : x86_64
processor :
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.4.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.dev0
setuptools : 56.0.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.1
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.4.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.4.23
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None

Prior Performance

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapPerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions