Skip to content

BUG: pandas.DataFrame.interpolate fails with high value of limit argument #34936

Open
@monstrorivas

Description

@monstrorivas
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample, a copy-pastable example

import pandas as pd
import numpy as np
df = pd.DataFrame([1]*500000)
df.iloc[1000:50000] =np.nan
df.interpolate(method='linear', limit_direction='both', limit=None)  # This runs fine eventhough the limit is effectively > 5000 datapoints
df.interpolate(method='linear', limit_direction='both', limit=5000)  # This produces an error

Problem description

An error is produced when specifying a large limit in pandas.DataFrame.Interpolate
The error is NOT present in pandas 1.0.1 but it is present at least in 1.0.4 and 1.0.5
If the limit is set to None, there is no error... even when the interpolated consecutive nans is larger than the limit that fails

Error:

ValueError: array is too big; `arr.size * arr.dtype.itemsize` is larger than the maximum possible size.

The error is with Python 3.7 but not with Python 3.6

Expected Output

The expected output is what pandas v1.0.1 produces.

In python 3.6, specifying a large value of limit doesn't result in a ValueError

This runs in v1.0.1

import pandas as pd
import numpy as np
df = pd.DataFrame([1]*500000)
df.iloc[1000:50000] =np.nan
dff = df.interpolate(method='linear', limit_direction='both', limit=5000) 
assert dff.isna().sum().values == 39000

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.7.4.final.0
python-bits : 32
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : None.None

pandas : 1.0.5
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 47.1.1
Cython : 0.29.20
pytest : 5.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.15.0
pandas_datareader: None
bs4 : 4.9.1
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.2.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.3
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    32bit32-bit systemsBugMissing-datanp.nan, pd.NaT, pd.NA, dropna, isnull, interpolate

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions