- 
          
- 
                Notifications
    You must be signed in to change notification settings 
- Fork 19.2k
Description
- 
[ x ] I have checked that this issue has not already been reported. 
- 
[ x ] I have confirmed this bug exists on the latest version of pandas. 
- 
(optional) I have confirmed this bug exists on the master branch of pandas. 
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
for i in range(100):
    n = 2 ** i
    print(f"Trying n = 2 ** {i} '{n}'...")
    df = pd.DataFrame([['A', 14], ['A', n]], columns=['gb', 'val'])
    gb_sum = df.groupby('gb').sum().values[0][0]
    df_sum = df.sum().values[1]
    if gb_sum != df_sum:
        print(f"df.sum().values[1] '{df_sum}' != df.groupby('gb').sum().values[0][0] '{gb_sum}")
        break
    del df
print(f"Runing pandas {pd.__version__}")
Problem description
groupby.sum() results currently provide different results for df.sum() results for large integers.
It is expected that they should provide the same results.
Expected Output
When grouping by a colum with a single value, the groupby().sum() result should always equal the df.sum() result()
Output of pd.show_versions()
INSTALLED VERSIONS
commit           : None
python           : 3.7.7.final.0
python-bits      : 64
OS               : Darwin
OS-release       : 19.5.0
machine          : x86_64
processor        : i386
byteorder        : little
LC_ALL           : None
LANG             : None
LOCALE           : en_US.UTF-8
pandas           : 1.0.4
numpy            : 1.18.2
pytz             : 2019.3
dateutil         : 2.8.1
pip              : 19.0.3
setuptools       : 40.8.0
Cython           : 0.29.16
pytest           : None
hypothesis       : None
sphinx           : None
blosc            : None
feather          : None
xlsxwriter       : None
lxml.etree       : None
html5lib         : None
pymysql          : None
psycopg2         : 2.8.3 (dt dec pq3 ext lo64)
jinja2           : None
IPython          : None
pandas_datareader: None
bs4              : None
bottleneck       : None
fastparquet      : None
gcsfs            : None
lxml.etree       : None
matplotlib       : None
numexpr          : None
odfpy            : None
openpyxl         : 2.6.2
pandas_gbq       : None
pyarrow          : None
pytables         : None
pytest           : None
pyxlsb           : None
s3fs             : 0.4.2
scipy            : None
sqlalchemy       : None
tables           : None
tabulate         : None
xarray           : None
xlrd             : 1.2.0
xlwt             : None
xlsxwriter       : None
numba            : None
Runing pandas None
Process finished with exit code 0