Closed
Description
Simple test to show that if I have two datetime columns and use dt.total_seconds() to calc the difference, values are stored with an offset of 0.00000000000001.
print(pd.__version__)
print(pd.show_versions())
1.0.3
INSTALLED VERSIONS
------------------
commit : None
python : 3.8.0.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-1062.18.1.el7.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.3
numpy : 1.18.3
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 41.4.0
Cython : 0.29.16
pytest : 5.4.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.2.1
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.1
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.16
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
iPython code:
import pandas as pd
import datetime
data = {'start':datetime.datetime(2020,1,1,12),
'end':datetime.datetime(2020,1,1,12,2)
}
df = pd.DataFrame(data,index=[0])
#try to parse to pd.to_datetime
df['end'] = pd.to_datetime(df['end'])
df['start'] = pd.to_datetime(df['start'])
print('print calc differences')
print((df['end'] - df['start']).dt.total_seconds())
print((df['end'] - df['start']).dt.total_seconds().values[0])
print('')
print('testing on normal float')
print(float(120))
print('')
Output:
print calc differences
0 120.0
dtype: float64
120.00000000000001
testing on normal float
120.0