-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
df = pd.DataFrame([[1, 10], [1, 20], [2, 40], [2, 30]], columns=['a', 'b'])
print("%s\n" % df)
print("Output of df.groupby('a')['b'].transform('rank'):\n%s\n" %
df.groupby('a')['b'].transform('rank'))
print("Output of df.groupby('a')['b'].rank():\n%s\n" %
df.groupby('a')['b'].rank())
print("Output of df.groupby('a')['b'].transform(lambda x: x.rank()):\n%s\n" %
df.groupby('a')['b'].transform(lambda x: x.rank()))
print("Output of df.groupby('a')['b'].transform('cumcount'):\n%s\n" %
df.groupby('a')['b'].transform('cumcount'))
print("Output of df.groupby('a')['b'].cumcount():\n%s\n" %
df.groupby('a')['b'].cumcount())Problem description
For simplicity, I will explain the issue for SeriesGroupBy, though the bug is present in DataFrameGroupBy as well.
When calling transform on a SeriesGroupBy object with a string input 'string_input' (e.g., .transform('mean')), the relevant code inside pandas/pandas/core/groupby/generic.py will end up calling SeriesGroupBy._transform_fast on the function
func = getattr(SeriesGroupBy, 'string_input')
(unless 'string_input' is inside base.cython_transforms, currently consisting of ['cumprod', 'cumsum', 'shift', 'cummin', 'cummax']). Inside _transform_fast, the result of applying func to the SeriesGroupBy object is then broadcast to the entire index of the original object. This works as expected if func returns a single value per group in the GroupBy object (e.g., for functions like 'mean', 'std', etc.). However, for functions like rank, cumcount, etc., that return several values per group, the result of broadcasting is nonsensical to my best knowledge.
Note: Index broadcasting works correctly if transform is called with a (non-cython) function, for example lambda x: x.rank(). In that case, _fast_transform is never called and the result is a simple concatenation of the results for each group.
Expected Output
The results of df.groupby('a')['b'].transform('rank') and df.groupby('a')['b'].rank() should be identical. Same for 'cumcount' and maybe other GroupBy functions.
Output of pd.show_versions()
[paste the output of pd.show_versions() here below this line]
INSTALLED VERSIONS
commit: None
python: 3.7.0.final.0
python-bits: 64
OS: Linux
OS-release: 4.18.3-arch1-1-ARCH
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.23.4
pytest: None
pip: 10.0.1
setuptools: 40.0.0
Cython: None
numpy: 1.15.0
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.5.0
sphinx: None
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.5
blosc: None
bottleneck: None
tables: 3.4.4
numexpr: 2.6.7
feather: None
matplotlib: 2.2.3
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None