Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import decimal
df = pd.DataFrame({'a': [decimal.Decimal('4.56')]*6, 'b': range(3, 6)*2, 'c': range(6)})
print df.groupby('b')['a'].sum()
print df.groupby('b')['a', 'c'].sum()
print df.groupby('b').agg({'a': 'sum', 'c': 'sum'})
Output:
b
3 9.12
4 9.12
5 9.12
Name: a, dtype: object
c
b
3 3
4 5
5 7
a c
b
3 9.12 3
4 9.12 5
5 9.12 7
Problem description
The aggregation over column a is dropped when another field is accessed from the groupby object, but works when requested through agg
(I'm not sure if 'sum' is exactly equivalent to .sum()
in the above).
Expected Output
b
3 9.12
4 9.12
5 9.12
Name: a, dtype: object
a c
b
3 9.12 3
4 9.12 5
5 9.12 7
a c
b
3 9.12 3
4 9.12 5
5 9.12 7
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.15.final.0
python-bits: 64
OS: Darwin
OS-release: 17.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.23.4
pytest: None
pip: 18.0
setuptools: 39.1.0
Cython: None
numpy: 1.14.3
scipy: 1.1.0
pyarrow: 0.8.0
xarray: None
IPython: 5.7.0
sphinx: None
patsy: 0.5.0
dateutil: 2.7.2
pytz: 2018.4
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: 1.1.0
xlwt: None
xlsxwriter: 1.0.4
lxml: None
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: 2.7.4 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None