DataFrame[np.nan] raises TypeError with non-unique columns #21428
Description
Code Sample, a copy-pastable example if possible
In [2]: pd.DataFrame(index=range(3), columns=[1, 2, float('nan'), 2])[float('nan')]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-86ff82017f2a> in <module>()
----> 1 pd.DataFrame(index=range(3), columns=[1, 2, float('nan'), 2])[float('nan')]
/home/nobackup/repo/pandas/pandas/core/frame.py in __getitem__(self, key)
2685 return self._getitem_multilevel(key)
2686 else:
-> 2687 return self._getitem_column(key)
2688
2689 def _getitem_column(self, key):
/home/nobackup/repo/pandas/pandas/core/frame.py in _getitem_column(self, key)
2695
2696 # duplicate columns & possible reduce dimensionality
-> 2697 result = self._constructor(self._data.get(key))
2698 if result.columns.is_unique:
2699 result = result[key]
/home/nobackup/repo/pandas/pandas/core/internals.py in get(self, item, fastpath)
4128
4129 if isna(item):
-> 4130 raise TypeError("cannot label index with a null key")
4131
4132 indexer = self.items.get_indexer_for([item])
TypeError: cannot label index with a null key
In [3]: pd.DataFrame(index=range(3), columns=[1, 2, float('nan'), 4])[float('nan')]
Out[3]:
0 NaN
1 NaN
2 NaN
Name: nan, dtype: object
In [4]: pd.Series(index=[1, 2, float('nan'), 2])[float('nan')]
Out[4]: nan
Problem description
The behavior of DataFrame[np.nan]
on non-unique columns makes no particular sense and deviates from the behavior of Series[np.nan]
.
This is mistakenly tested here:
pandas/pandas/tests/frame/test_constructors.py
Line 1665 in 636dd01
I will push a fix in few minutes.
Expected Output
Same as Out[3]:
.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: 415012f
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.9.0-6-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: it_IT.UTF-8
LOCALE: it_IT.UTF-8
pandas: 0.24.0.dev0+83.g415012f4f
pytest: 3.5.0
pip: 9.0.1
setuptools: 39.2.0
Cython: 0.25.2
numpy: 1.14.3
scipy: 0.19.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: 1.5.6
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: 1.2.0dev
tables: 3.3.0
numexpr: 2.6.1
feather: 0.3.1
matplotlib: 2.2.2.post1153+gff6786446
openpyxl: 2.3.0
xlrd: 1.0.0
xlwt: 1.3.0
xlsxwriter: 0.9.6
lxml: 4.1.1
bs4: 4.5.3
html5lib: 0.999999999
sqlalchemy: 1.0.15
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: 0.2.1