Skip to content

pd.Series.map is unreasonably slow. #21278

Closed
@allComputableThings

Description

@allComputableThings

Code Sample, a copy-pastable example if possible

numiter = 100
for n in [10, 1000, 1000000, 10000000,]:
    domain = np.arange(0, n)
    range = domain+10
    maptable = pd.Series(range, index=domain).sort_index()

    query_vals = pd.Series([1,2,3])
    def f():
        query_vals.map(maptable)
    print n, timeit.timeit(stmt=f, number=numiter)/numiter


10 0.000630810260773
1000 0.000978469848633
1000000 0.00130645036697
10000000 0.0162791204453

Problem description

The above tries to map 3 values in a lookup table, much like looking up values in python dictionary.

n is the size of the table (not the query).

At n=10000000 its taken (0.01/3) seconds per mapped value -- unbelievably shockingly slow.

Expected Output

Costs are growing with O(len(maptable)).
My series' index is sorted. My expectation is that pandas costs <<< O(maptable) for this type of operation.

Costs can scale equal to or less than:

  • O(len(query_vals) * O(len(log(maptable))), for a binary search on index, or
  • O(len(query_vals)) for hashed index.

... in other words, there shouldn't be huge differences in the timing of n=10, and n=10000000
for a trivial implementation.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 2.7.6.final.0
python-bits: 64
OS: Linux
OS-release: 3.13.0-24-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None

pandas: 0.22.0
pytest: None
pip: 9.0.1
setuptools: 36.0.1
Cython: 0.27.3
numpy: 1.14.0
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: 5.3.0
sphinx: None
patsy: 0.2.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: None
tables: 3.1.1
numexpr: 2.6.2
feather: None
matplotlib: 2.1.0
openpyxl: 1.7.0
xlrd: 0.9.2
xlwt: 0.7.5
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: 1.2.7
pymysql: None
psycopg2: 2.7.4 (dt dec pq3 ext lo64)
jinja2: 2.9.6
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions