Skip to content

Cannot apply lambda function to DataFrame with columns of type numpy.datetime64 #18573

Closed
@meditativeape

Description

@meditativeape

Code Sample, a copy-pastable example if possible

import pandas as pd
import numpy as np

ts1 = np.datetime64('2017-11-29T03:30')
ts2 = np.datetime64('2017-11-29T03:45')
d = {'number' : pd.Series([1., 2.]), 'string': pd.Series(['haha', 'wawa']), 'datetime64': pd.Series([ts1, ts2])}
df = pd.DataFrame(d)
df.apply(lambda row: (row.number, row.string), axis=1)

Problem description

Applying lambda function to a DataFrame with columns of type numpy.datetime64 throws an unexpected error: ValueError: Shape of passed values is (2, 2), indices imply (2, 3). The error message is not helpful, and I believe this error is thrown due to a bug. Dropping columns of type numpy.datetime64 fixes the issue.

Expected Output

0    (1.0, haha)
1    (2.0, wawa)
dtype: object

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 2.7.14.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None

pandas: 0.20.3
pytest: 3.2.1
pip: 9.0.1
setuptools: 36.5.0.post20170921
Cython: 0.26.1
numpy: 1.13.3
scipy: 0.19.1
xarray: None
IPython: 5.4.1
sphinx: 1.6.3
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.1.0
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.2.0
xlsxwriter: 1.0.2
lxml: 4.1.0
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapDuplicate ReportDuplicate issue or pull request

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions