Skip to content

Pandas conversion of Timedelta is very slow #18092

Closed
@Stanpol

Description

@Stanpol

Code Sample, a copy-pastable example if possible

a=pd.Series([pd.Timedelta(days=x) for x in np.random.randint(0, 10, 60000)])

# Let's convert Timedelta to days with Pandas
%time a.dt.days
# CPU times: user 457 ms, sys: 4.08 ms, total: 461 ms
# Wall time: 464 ms

# Let's convert Timedelta to days by division 
%time (a / np.timedelta64(1, 'D')).astype(np.int64)
# CPU times: user 3.19 ms, sys: 1.79 ms, total: 4.98 ms
# Wall time: 3.18 ms

# Make sure results are the same
((a / np.timedelta64(1, 'D')).astype(np.int64)==a.dt.days).value_counts()
# True    60000
# dtype: int64

Problem description

For large Series it takes very long time to do a simple conversion, this should be optimised.

Expected Output

.dt.days should be as quick as dividing by np.timedelta64(1, 'D')

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None

pandas: 0.20.3
pytest: None
pip: 9.0.1
setuptools: 36.4.0
Cython: 0.26
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: 6.1.0
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: 1.1.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.9999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    PerformanceMemory or execution speed performanceTimedeltaTimedelta data type

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions