Description
Sorry in advance if this is already discussed/reported - I searched in the archive, but didn't know exactly what to search.
Code Sample, a copy-pastable example if possible
In [2]: tt = pd.DataFrame([[1, 2, 'v1', 'v2'], [3, 4, 'v3','v4']],
...: columns=['idx1', 'idx2', 2, 6]).set_index(['idx1', 'idx2'])
In [3]: tt
Out[3]:
2 6
idx1 idx2
1 2 v1 v2
3 4 v3 v4
In [4]: tt.loc[1,2]
Out[4]:
2 v1
6 v2
Name: (1, 2), dtype: object
In [5]: tt.loc[:1,2]
Out[5]:
idx1 idx2
1 2 v1
Name: 2, dtype: object
In [6]: tt.loc[:,2]
Out[6]:
idx1 idx2
1 2 v1
3 4 v3
Name: 2, dtype: object
Problem description
.loc[l1, l2]
called on a MultiIndex
ed DataFrame
is ambiguous: l2
could refer to the second level of the index
, or to the columns
. Apparently, the decision has been taken to follow the first interpretation, and it is fine. But then, the same must happen when l1
and l2
are slices.
I can understand that In [6]
might "look different" from In [4]
: but In [4]
and In [5]
should really give the same result (and hence In [6]
too).
Expected Output
Out [4]
in all three cases (or Out [6]
if we prefer to favour the second interpretation - which however would probably be more disruptive).
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.7.0-1-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: it_IT.utf8
LOCALE: it_IT.UTF-8
pandas: 0.20.1
pytest: 3.0.6
pip: 9.0.1
setuptools: None
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
xarray: 0.9.2
IPython: 5.1.0.dev
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.3.0
numexpr: 2.6.1
feather: 0.3.1
matplotlib: 2.0.2
openpyxl: 2.3.0
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.6
lxml: 3.7.1
bs4: 4.5.3
html5lib: 0.999999999
sqlalchemy: 1.0.15
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.2.1