Description
Code Sample, a copy-pastable example if possible
Python 2.7
>>> import sys
>>> sys.version
'2.7.13 |Continuum Analytics, Inc.| (default, Dec 20 2016, 23:05:08) \n[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)]'
>>> import numpy as np
>>> import scipy.sparse
>>> a = np.arange(1, 5).reshape(2,2)
>>> a
array([[1, 2],
[3, 4]])
>>> spm = scipy.sparse.dok_matrix(a)
>>> spm
<2x2 sparse matrix of type '<type 'numpy.int64'>'
with 4 stored elements in Dictionary Of Keys format>
>>> pd.SparseDataFrame(a)
0 1
0 1 2
1 3 4
>>> pd.SparseDataFrame(spm)
0 1
0 3 2
1 1 4
Python 3.6
>>> import sys
>>> sys.version
'3.6.1 |Continuum Analytics, Inc.| (default, Mar 22 2017, 19:25:17) \n[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)]'
>>> a = np.arange(1, 5).reshape(2,2)
>>> spm = scipy.sparse.dok_matrix(a)
>>> pd.SparseDataFrame(spm)
0 1
0 1 2
1 3 4
Problem description
Initialization of SparseDataFrame with scipy.sparse.dok_matrix returns a different result from direct initialization from np.ndarray only in Python 2.7. This is inconsistent and unestimated behavior.
The scipy.sparse.dia_matrix shows similar buggy behavior.
Expected Output
>>> spm = scipy.sparse.dok_matrix(np.arange(1, 5).reshape(2,2))
>>> pd.SparseDataFrame(spm)
0 1
0 1 2
1 3 4
Output of pd.show_versions()
pandas: 0.20.0rc1+29.g075eca1
pytest: 3.0.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.18.1
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
pandas_gbq: None
pandas_datareader: None