Description
Code Sample, a copy-pastable example if possible
import pandas as pd
series_1 = pd.Series(['13/03/2000', '01/03/2000', '02/03/2000']) # dates in European format
series_2 = pd.Series(['01/03/2000', '13/03/2000', '02/03/2000']) # same dates, reordered
converted_1 = pd.to_datetime(series_1, infer_datetime_format=True)
converted_2 = pd.to_datetime(series_2, infer_datetime_format=True)
print sorted(series_1) == sorted(series_2) # True
print sorted(converted_1) == sorted(converted_2) # False
Problem description
One would hope to obtain the same result when applying pd.to_datetime
to the same series twice, but shuffled.
Expected Output
My understanding is that the format determined when setting infer_datetime_format=True
is obtained from the first non-null value of the Series (see function _guess_datetime_format_for_array
in tseries.tools
), which explains the result above. I understand this logic in terms of optimizing the operation, and it does work as expected most of the time.
However, I feel like the example provided above is fairly generic. Ideally, the function would find the best datetime_format
for the entire Series. Any ideas on how to implement this ?
Output of pd.show_versions()
pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 28.8.0
Cython: None
numpy: 1.11.3
scipy: 0.18.0
statsmodels: None
xarray: None
IPython: 2.4.1
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: None
tables: None
numexpr: None
matplotlib: 1.5.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
boto: None
pandas_datareader: None