Skip to content

PERF: PeriodIndex.size #14822

Closed
Closed
@max-sixty

Description

@max-sixty

Code Sample, a copy-pastable example if possible

In [1]: import pandas as pd

In [2]: index = pd.PeriodIndex(start='1952', periods=50000, freq='B')

In [3]: %timeit index.size
10 loops, best of 3: 102 ms per loop

In [4]: %timeit index._values.size
The slowest run took 24.79 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 233 ns per loop

Problem description

@sinhrks - now that the PeriodIndex call to .values unboxes all the periods, operations like PeriodIndex.size are much slower.

What's the best way around this? Should we override more methods so that they call into ._values rather than .values?

Output of pd.show_versions()

In [6]: pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Darwin
OS-release: 16.1.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.19.1
nose: 1.3.7
pip: 9.0.1
setuptools: 28.8.0
Cython: None
numpy: 1.11.2
scipy: 0.18.1
statsmodels: 0.6.1
xarray: 0.8.2
IPython: 5.1.0
sphinx: None
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.7
blosc: None
bottleneck: 1.2.0
tables: None
numexpr: 2.6.1
matplotlib: 1.5.3
openpyxl: None
xlrd: None
xlwt: 1.1.2
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: 0.9.2
apiclient: 1.5.5
sqlalchemy: 1.1.4
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.43.0
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    PerformanceMemory or execution speed performancePeriodPeriod data typeRegressionFunctionality that used to work in a prior pandas version

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions