This repository contains the official implementation of our NeurIPS 2025 Poster paper:
Precise Diffusion Inversion: Towards Novel Samples and Few-Step Models
Jing Zuo · Luoping Cui · Chuang Zhu · Yonggang Qi
conda create -n preciseinv python==3.11.*
conda activate preciseinv
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c pytorch -c nvidia
pip install diffusers transformers lpips scikit-image matplotlib
python inversion.py \
--input_images input_images/dog.jpg \
--model_name SD14 \
--scheduler_name DDPM \
--num_inference_steps 2 \
--batch_size 1 \
--eta 1e-2 \
--learning_rate 0.1 \
--save_dir outputs
| Model Name | Scheduler | Status |
|---|---|---|
| SD14 | DDIM / DDPM | ✅ Supported |
| SD15 | DDIM / DDPM | ✅ Supported |
| SD21 | DDIM / DDPM | ✅ Supported |
| SDXL | DDIM / DDPM | ✅ Supported |
| LCM-SD15 | DDIM / DDPM | ✅ Supported |
| LCM-SDXL | DDIM / DDPM | ✅ Supported |
| SDXL-Turbo | DDIM / DDPM | ✅ Supported |
| SD3 | Euler | ✅ Supported |
| FLUX | Euler | |
| ShortCut | Euler | |
| MeanFlow | Euler |
@inproceedings{zuo2025precise,
title = {Precise Diffusion Inversion: Towards Novel Samples and Few-Step Models},
author = {Zuo, Jing and Cui, Luoping and Zhu, Chuang and Qi, Yonggang},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year = {2025}
}