Skip to content

bump parquet version #45

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 13, 2016
Merged

bump parquet version #45

merged 3 commits into from
Oct 13, 2016

Conversation

robert3005
Copy link

bump to latest parquet as they stabilized for release and contains api change necessary for reading footers from streams

@robert3005 robert3005 merged commit 9eb9b17 into master Oct 13, 2016
@robert3005 robert3005 deleted the robertk/bump-parquet branch October 13, 2016 18:57
mccheah pushed a commit that referenced this pull request Aug 26, 2019
## What changes were proposed in this pull request?
This PR aims at improving the way physical plans are explained in spark.

Currently, the explain output for physical plan may look very cluttered and each operator's
string representation can be very wide and wraps around in the display making it little
hard to follow. This especially happens when explaining a query 1) Operating on wide tables
2) Has complex expressions etc.

This PR attempts to split the output into two sections. In the header section, we display
the basic operator tree with a number associated with each operator. In this section, we strictly
control what we output for each operator. In the footer section, each operator is verbosely
displayed. Based on the feedback from Maryann, the uncorrelated subqueries (SubqueryExecs) are not included in the main plan. They are printed separately after the main plan and can be
correlated by the originating expression id from its parent plan.

To illustrate, here is a simple plan displayed in old vs new way.

Example query1 :
```
EXPLAIN SELECT key, Max(val) FROM explain_temp1 WHERE key > 0 GROUP BY key HAVING max(val) > 0
```

Old :
```
*(2) Project [key#2, max(val)#15]
+- *(2) Filter (isnotnull(max(val#3)#18) AND (max(val#3)#18 > 0))
   +- *(2) HashAggregate(keys=[key#2], functions=[max(val#3)], output=[key#2, max(val)#15, max(val#3)#18])
      +- Exchange hashpartitioning(key#2, 200)
         +- *(1) HashAggregate(keys=[key#2], functions=[partial_max(val#3)], output=[key#2, max#21])
            +- *(1) Project [key#2, val#3]
               +- *(1) Filter (isnotnull(key#2) AND (key#2 > 0))
                  +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), (key#2 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), GreaterThan(key,0)], ReadSchema: struct<key:int,val:int>
```
New :
```
Project (8)
+- Filter (7)
   +- HashAggregate (6)
      +- Exchange (5)
         +- HashAggregate (4)
            +- Project (3)
               +- Filter (2)
                  +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1 [codegen id : 1]
Output: [key#2, val#3]

(2) Filter [codegen id : 1]
Input     : [key#2, val#3]
Condition : (isnotnull(key#2) AND (key#2 > 0))

(3) Project [codegen id : 1]
Output    : [key#2, val#3]
Input     : [key#2, val#3]

(4) HashAggregate [codegen id : 1]
Input: [key#2, val#3]

(5) Exchange
Input: [key#2, max#11]

(6) HashAggregate [codegen id : 2]
Input: [key#2, max#11]

(7) Filter [codegen id : 2]
Input     : [key#2, max(val)#5, max(val#3)#8]
Condition : (isnotnull(max(val#3)#8) AND (max(val#3)#8 > 0))

(8) Project [codegen id : 2]
Output    : [key#2, max(val)#5]
Input     : [key#2, max(val)#5, max(val#3)#8]
```

Example Query2 (subquery):
```
SELECT * FROM   explain_temp1 WHERE  KEY = (SELECT Max(KEY) FROM   explain_temp2 WHERE  KEY = (SELECT Max(KEY) FROM   explain_temp3 WHERE  val > 0) AND val = 2) AND val > 3
```
Old:
```
*(1) Project [key#2, val#3]
+- *(1) Filter (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#39)) AND (val#3 > 3))
   :  +- Subquery scalar-subquery#39
   :     +- *(2) HashAggregate(keys=[], functions=[max(KEY#26)], output=[max(KEY)#45])
   :        +- Exchange SinglePartition
   :           +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#26)], output=[max#47])
   :              +- *(1) Project [key#26]
   :                 +- *(1) Filter (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#38)) AND (val#27 = 2))
   :                    :  +- Subquery scalar-subquery#38
   :                    :     +- *(2) HashAggregate(keys=[], functions=[max(KEY#28)], output=[max(KEY)#43])
   :                    :        +- Exchange SinglePartition
   :                    :           +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#28)], output=[max#49])
   :                    :              +- *(1) Project [key#28]
   :                    :                 +- *(1) Filter (isnotnull(val#29) AND (val#29 > 0))
   :                    :                    +- *(1) FileScan parquet default.explain_temp3[key#28,val#29] Batched: true, DataFilters: [isnotnull(val#29), (val#29 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp3], PartitionFilters: [], PushedFilters: [IsNotNull(val), GreaterThan(val,0)], ReadSchema: struct<key:int,val:int>
   :                    +- *(1) FileScan parquet default.explain_temp2[key#26,val#27] Batched: true, DataFilters: [isnotnull(key#26), isnotnull(val#27), (val#27 = 2)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp2], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), EqualTo(val,2)], ReadSchema: struct<key:int,val:int>
   +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), isnotnull(val#3), (val#3 > 3)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), GreaterThan(val,3)], ReadSchema: struct<key:int,val:int>
```
New:
```
Project (3)
+- Filter (2)
   +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1 [codegen id : 1]
Output: [key#2, val#3]

(2) Filter [codegen id : 1]
Input     : [key#2, val#3]
Condition : (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#23)) AND (val#3 > 3))

(3) Project [codegen id : 1]
Output    : [key#2, val#3]
Input     : [key#2, val#3]
===== Subqueries =====

Subquery:1 Hosting operator id = 2 Hosting Expression = Subquery scalar-subquery#23
HashAggregate (9)
+- Exchange (8)
   +- HashAggregate (7)
      +- Project (6)
         +- Filter (5)
            +- Scan parquet default.explain_temp2 (4)

(4) Scan parquet default.explain_temp2 [codegen id : 1]
Output: [key#26, val#27]

(5) Filter [codegen id : 1]
Input     : [key#26, val#27]
Condition : (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#22)) AND (val#27 = 2))

(6) Project [codegen id : 1]
Output    : [key#26]
Input     : [key#26, val#27]

(7) HashAggregate [codegen id : 1]
Input: [key#26]

(8) Exchange
Input: [max#35]

(9) HashAggregate [codegen id : 2]
Input: [max#35]

Subquery:2 Hosting operator id = 5 Hosting Expression = Subquery scalar-subquery#22
HashAggregate (15)
+- Exchange (14)
   +- HashAggregate (13)
      +- Project (12)
         +- Filter (11)
            +- Scan parquet default.explain_temp3 (10)

(10) Scan parquet default.explain_temp3 [codegen id : 1]
Output: [key#28, val#29]

(11) Filter [codegen id : 1]
Input     : [key#28, val#29]
Condition : (isnotnull(val#29) AND (val#29 > 0))

(12) Project [codegen id : 1]
Output    : [key#28]
Input     : [key#28, val#29]

(13) HashAggregate [codegen id : 1]
Input: [key#28]

(14) Exchange
Input: [max#37]

(15) HashAggregate [codegen id : 2]
Input: [max#37]
```

Note:
I opened this PR as a WIP to start getting feedback. I will be on vacation starting tomorrow
would not be able to immediately incorporate the feedback. I will start to
work on them as soon as i can. Also, currently this PR provides a basic infrastructure
for explain enhancement. The details about individual operators will be implemented
in follow-up prs
## How was this patch tested?
Added a new test `explain.sql` that tests basic scenarios. Need to add more tests.

Closes apache#24759 from dilipbiswal/explain_feature.

Authored-by: Dilip Biswal <dbiswal@us.ibm.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
rahij pushed a commit that referenced this pull request Oct 21, 2020
… more scenarios such as PartitioningCollection

### What changes were proposed in this pull request?

This PR proposes to improve  `EnsureRquirement.reorderJoinKeys` to handle the following scenarios:
1. If the keys cannot be reordered to match the left-side `HashPartitioning`, consider the right-side `HashPartitioning`.
2. Handle `PartitioningCollection`, which may contain `HashPartitioning`

### Why are the changes needed?

1. For the scenario 1), the current behavior matches either the left-side `HashPartitioning` or the right-side `HashPartitioning`. This means that if both sides are `HashPartitioning`, it will try to match only the left side.
The following will not consider the right-side `HashPartitioning`:
```
val df1 = (0 until 10).map(i => (i % 5, i % 13)).toDF("i1", "j1")
val df2 = (0 until 10).map(i => (i % 7, i % 11)).toDF("i2", "j2")
df1.write.format("parquet").bucketBy(4, "i1", "j1").saveAsTable("t1")df2.write.format("parquet").bucketBy(4, "i2", "j2").saveAsTable("t2")
val t1 = spark.table("t1")
val t2 = spark.table("t2")
val join = t1.join(t2, t1("i1") === t2("j2") && t1("i1") === t2("i2"))
 join.explain

== Physical Plan ==
*(5) SortMergeJoin [i1#26, i1#26], [j2#31, i2#30], Inner
:- *(2) Sort [i1#26 ASC NULLS FIRST, i1#26 ASC NULLS FIRST], false, 0
:  +- Exchange hashpartitioning(i1#26, i1#26, 4), true, [id=#69]
:     +- *(1) Project [i1#26, j1#27]
:        +- *(1) Filter isnotnull(i1#26)
:           +- *(1) ColumnarToRow
:              +- FileScan parquet default.t1[i1#26,j1#27] Batched: true, DataFilters: [isnotnull(i1#26)], Format: Parquet, Location: InMemoryFileIndex[..., PartitionFilters: [], PushedFilters: [IsNotNull(i1)], ReadSchema: struct<i1:int,j1:int>, SelectedBucketsCount: 4 out of 4
+- *(4) Sort [j2#31 ASC NULLS FIRST, i2#30 ASC NULLS FIRST], false, 0.
   +- Exchange hashpartitioning(j2#31, i2#30, 4), true, [id=#79].       <===== This can be removed
      +- *(3) Project [i2#30, j2#31]
         +- *(3) Filter (((j2#31 = i2#30) AND isnotnull(j2#31)) AND isnotnull(i2#30))
            +- *(3) ColumnarToRow
               +- FileScan parquet default.t2[i2#30,j2#31] Batched: true, DataFilters: [(j2#31 = i2#30), isnotnull(j2#31), isnotnull(i2#30)], Format: Parquet, Location: InMemoryFileIndex[..., PartitionFilters: [], PushedFilters: [IsNotNull(j2), IsNotNull(i2)], ReadSchema: struct<i2:int,j2:int>, SelectedBucketsCount: 4 out of 4

```

2.  For the scenario 2), the current behavior does not handle `PartitioningCollection`:
```
val df1 = (0 until 100).map(i => (i % 5, i % 13)).toDF("i1", "j1")
val df2 = (0 until 100).map(i => (i % 7, i % 11)).toDF("i2", "j2")
val df3 = (0 until 100).map(i => (i % 5, i % 13)).toDF("i3", "j3")
val join = df1.join(df2, df1("i1") === df2("i2") && df1("j1") === df2("j2")) // PartitioningCollection
val join2 = join.join(df3, join("j1") === df3("j3") && join("i1") === df3("i3"))
join2.explain

== Physical Plan ==
*(9) SortMergeJoin [j1#8, i1#7], [j3#30, i3#29], Inner
:- *(6) Sort [j1#8 ASC NULLS FIRST, i1#7 ASC NULLS FIRST], false, 0.       <===== This can be removed
:  +- Exchange hashpartitioning(j1#8, i1#7, 5), true, [id=#58]             <===== This can be removed
:     +- *(5) SortMergeJoin [i1#7, j1#8], [i2#18, j2#19], Inner
:        :- *(2) Sort [i1#7 ASC NULLS FIRST, j1#8 ASC NULLS FIRST], false, 0
:        :  +- Exchange hashpartitioning(i1#7, j1#8, 5), true, [id=#45]
:        :     +- *(1) Project [_1#2 AS i1#7, _2#3 AS j1#8]
:        :        +- *(1) LocalTableScan [_1#2, _2#3]
:        +- *(4) Sort [i2#18 ASC NULLS FIRST, j2#19 ASC NULLS FIRST], false, 0
:           +- Exchange hashpartitioning(i2#18, j2#19, 5), true, [id=#51]
:              +- *(3) Project [_1#13 AS i2#18, _2#14 AS j2#19]
:                 +- *(3) LocalTableScan [_1#13, _2#14]
+- *(8) Sort [j3#30 ASC NULLS FIRST, i3#29 ASC NULLS FIRST], false, 0
   +- Exchange hashpartitioning(j3#30, i3#29, 5), true, [id=#64]
      +- *(7) Project [_1#24 AS i3#29, _2#25 AS j3#30]
         +- *(7) LocalTableScan [_1#24, _2#25]
```
### Does this PR introduce _any_ user-facing change?

Yes, now from the above examples, the shuffle/sort nodes pointed by `This can be removed` are now removed:
1. Senario 1):
```
== Physical Plan ==
*(4) SortMergeJoin [i1#26, i1#26], [i2#30, j2#31], Inner
:- *(2) Sort [i1#26 ASC NULLS FIRST, i1#26 ASC NULLS FIRST], false, 0
:  +- Exchange hashpartitioning(i1#26, i1#26, 4), true, [id=#67]
:     +- *(1) Project [i1#26, j1#27]
:        +- *(1) Filter isnotnull(i1#26)
:           +- *(1) ColumnarToRow
:              +- FileScan parquet default.t1[i1#26,j1#27] Batched: true, DataFilters: [isnotnull(i1#26)], Format: Parquet, Location: InMemoryFileIndex[..., PartitionFilters: [], PushedFilters: [IsNotNull(i1)], ReadSchema: struct<i1:int,j1:int>, SelectedBucketsCount: 4 out of 4
+- *(3) Sort [i2#30 ASC NULLS FIRST, j2#31 ASC NULLS FIRST], false, 0
   +- *(3) Project [i2#30, j2#31]
      +- *(3) Filter (((j2#31 = i2#30) AND isnotnull(j2#31)) AND isnotnull(i2#30))
         +- *(3) ColumnarToRow
            +- FileScan parquet default.t2[i2#30,j2#31] Batched: true, DataFilters: [(j2#31 = i2#30), isnotnull(j2#31), isnotnull(i2#30)], Format: Parquet, Location: InMemoryFileIndex[..., PartitionFilters: [], PushedFilters: [IsNotNull(j2), IsNotNull(i2)], ReadSchema: struct<i2:int,j2:int>, SelectedBucketsCount: 4 out of 4
```
2. Scenario 2):
```
== Physical Plan ==
*(8) SortMergeJoin [i1#7, j1#8], [i3#29, j3#30], Inner
:- *(5) SortMergeJoin [i1#7, j1#8], [i2#18, j2#19], Inner
:  :- *(2) Sort [i1#7 ASC NULLS FIRST, j1#8 ASC NULLS FIRST], false, 0
:  :  +- Exchange hashpartitioning(i1#7, j1#8, 5), true, [id=#43]
:  :     +- *(1) Project [_1#2 AS i1#7, _2#3 AS j1#8]
:  :        +- *(1) LocalTableScan [_1#2, _2#3]
:  +- *(4) Sort [i2#18 ASC NULLS FIRST, j2#19 ASC NULLS FIRST], false, 0
:     +- Exchange hashpartitioning(i2#18, j2#19, 5), true, [id=#49]
:        +- *(3) Project [_1#13 AS i2#18, _2#14 AS j2#19]
:           +- *(3) LocalTableScan [_1#13, _2#14]
+- *(7) Sort [i3#29 ASC NULLS FIRST, j3#30 ASC NULLS FIRST], false, 0
   +- Exchange hashpartitioning(i3#29, j3#30, 5), true, [id=#58]
      +- *(6) Project [_1#24 AS i3#29, _2#25 AS j3#30]
         +- *(6) LocalTableScan [_1#24, _2#25]
```

### How was this patch tested?

Added tests.

Closes apache#29074 from imback82/reorder_keys.

Authored-by: Terry Kim <yuminkim@gmail.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant