Skip to content

📚 Python Data Engineering Course | Essential concepts for data engineering with practical examples | Topics: Data processing, DB operations, API integrations, Data visualization, Error handling | For: Data engineers & analysts | Python 3.x | MIT License

Notifications You must be signed in to change notification settings

paingzinhtun/python_data_engineer_course

Repository files navigation

Python for Data Engineering Course

This comprehensive course covers essential Python concepts and libraries needed for data engineering. The course is structured into multiple modules, each focusing on specific aspects of data engineering.

Course Structure

  1. Basic Python Fundamentals (01_basic_fundamentals.py)

    • Variables and data types
    • Control structures
    • List and dictionary comprehensions
  2. Functions and Modules (02_functions_and_modules.py)

    • Function definitions and usage
    • Lambda functions
    • Module organization
  3. File Operations (03_file_operations.py)

    • Reading and writing text files
    • Working with CSV files
    • JSON file handling
  4. Data Processing (04_data_processing.py)

    • Pandas DataFrame operations
    • Data filtering and transformation
    • Data cleaning techniques
  5. Data Visualization (05_data_visualization.py)

    • Matplotlib basics
    • Seaborn visualizations
    • Advanced plotting techniques
  6. API Operations (06_api_operations.py)

    • REST API interactions
    • API client implementation
    • Rate limiting and error handling
  7. Database Operations (07_database_operations.py)

    • SQLite operations
    • SQLAlchemy ORM
    • Pandas SQL integration
  8. Error Handling (08_error_handling.py)

    • Exception handling
    • Custom exceptions
    • Logging and debugging

Setup Instructions

  1. Create a virtual environment (recommended):

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  2. Install dependencies:

    pip install -r requirements.txt

Usage

Each module can be run independently:

python 01_basic_fundamentals.py
python 02_functions_and_modules.py
# etc.

Additional Resources

Contributing

Feel free to contribute to this course by:

  1. Forking the repository
  2. Creating a feature branch
  3. Making your changes
  4. Submitting a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

📚 Python Data Engineering Course | Essential concepts for data engineering with practical examples | Topics: Data processing, DB operations, API integrations, Data visualization, Error handling | For: Data engineers & analysts | Python 3.x | MIT License

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published