This comprehensive course covers essential Python concepts and libraries needed for data engineering. The course is structured into multiple modules, each focusing on specific aspects of data engineering.
-
Basic Python Fundamentals (
01_basic_fundamentals.py
)- Variables and data types
- Control structures
- List and dictionary comprehensions
-
Functions and Modules (
02_functions_and_modules.py
)- Function definitions and usage
- Lambda functions
- Module organization
-
File Operations (
03_file_operations.py
)- Reading and writing text files
- Working with CSV files
- JSON file handling
-
Data Processing (
04_data_processing.py
)- Pandas DataFrame operations
- Data filtering and transformation
- Data cleaning techniques
-
Data Visualization (
05_data_visualization.py
)- Matplotlib basics
- Seaborn visualizations
- Advanced plotting techniques
-
API Operations (
06_api_operations.py
)- REST API interactions
- API client implementation
- Rate limiting and error handling
-
Database Operations (
07_database_operations.py
)- SQLite operations
- SQLAlchemy ORM
- Pandas SQL integration
-
Error Handling (
08_error_handling.py
)- Exception handling
- Custom exceptions
- Logging and debugging
-
Create a virtual environment (recommended):
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
Each module can be run independently:
python 01_basic_fundamentals.py
python 02_functions_and_modules.py
# etc.
- Pandas Documentation
- Matplotlib Documentation
- Seaborn Documentation
- SQLAlchemy Documentation
- Python Documentation
Feel free to contribute to this course by:
- Forking the repository
- Creating a feature branch
- Making your changes
- Submitting a pull request
This project is licensed under the MIT License - see the LICENSE file for details.