-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
101 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import torch.nn | ||
import torch.nn.functional as F | ||
import torch | ||
import sqlite3 | ||
import random | ||
import numpy | ||
import json | ||
import time | ||
from tqdm import tqdm | ||
import torch | ||
|
||
from model import Config, BradleyTerry | ||
import shared | ||
|
||
batch_size = 128 | ||
device = "cuda" | ||
|
||
config = Config( | ||
d_emb=1152, | ||
n_hidden=1, | ||
n_ensemble=16, | ||
device=device, | ||
dtype=torch.float32, | ||
dropout=0.1 | ||
) | ||
model = BradleyTerry(config).float() | ||
modelc, _ = shared.checkpoint_for(1500) | ||
model.load_state_dict(torch.load(modelc)) | ||
params = sum(p.numel() for p in model.parameters()) | ||
print(f"{params/1e6:.1f}M parameters") | ||
print(model) | ||
|
||
files = shared.fetch_all_files() | ||
ratings = {} | ||
|
||
model.eval() | ||
with torch.inference_mode(): | ||
for bstart in tqdm(range(0, len(files), batch_size)): | ||
batch = files[bstart:bstart + batch_size] | ||
filenames = [ filename for filename, embedding in batch ] | ||
embs = torch.stack([ torch.Tensor(embedding) for filename, embedding in batch ]) | ||
inputs = embs.unsqueeze(0).expand((config.n_ensemble, len(batch), config.d_emb)).to(device) | ||
scores = model.ensemble(inputs).float() | ||
mscores = torch.median(scores, dim=0).values | ||
for filename, mscore in zip(filenames, mscores): | ||
ratings[filename] = float(mscore) | ||
|
||
ratings = sorted(ratings.items(), key=lambda x: x[1]) | ||
random.shuffle(ratings) | ||
|
||
N = 150 | ||
|
||
buf = f"""<!DOCTYPE html> | ||
<div> | ||
{''.join(f'<div><img src="{"images/" + f}" width="30%"><br><input type=checkbox data-score="{s}"></div>' for i, (f, s) in enumerate(ratings[:N]))} | ||
</div> | ||
<script> | ||
const dump = () => {{ | ||
const data = [] | ||
for (const x of document.querySelectorAll("input[type=checkbox]")) {{ | ||
data.push([parseFloat(x.getAttribute("data-score")), x.checked]) | ||
}} | ||
console.log(JSON.stringify(data)) | ||
}} | ||
</script> | ||
""" | ||
|
||
with open("eval.html", "w") as f: | ||
f.write(buf) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import matplotlib.pyplot as plt | ||
import json | ||
|
||
data = json.loads("[[1.2792096138000488,true],[1.1153279542922974,true],[0.9720794558525085,true],[-0.5180545449256897,false],[1.4547114372253418,true],[1.3289614915847778,true],[1.8748269081115723,true],[0.05465051531791687,false],[0.7888763546943665,true],[1.368210792541504,true],[1.4808461666107178,true],[0.9501181244850159,true],[1.2592355012893677,true],[1.0127032995224,true],[-0.8805797100067139,false],[-0.08946493268013,true],[0.4224545955657959,false],[1.0051900148391724,true],[0.5121232271194458,false],[1.0876282453536987,false],[1.5552432537078857,true],[-0.3680466413497925,false],[0.45498305559158325,true],[1.3851803541183472,true],[-0.8842921853065491,false],[2.6869430541992188,false],[1.6892706155776978,false],[0.7087478637695312,false],[-0.5138207077980042,false],[0.16498255729675293,false],[1.265992283821106,true],[0.47311416268348694,false],[0.04918492212891579,false],[1.283980369567871,true],[1.0510015487670898,false],[1.6323922872543335,false],[0.4570896625518799,true],[1.5262614488601685,true],[1.4057230949401855,true],[1.0391144752502441,true],[0.9190238118171692,true],[1.2970502376556396,true],[2.025949478149414,true],[0.6396026611328125,true],[2.3505871295928955,true],[1.0854156017303467,false],[1.0216373205184937,true],[-1.163207769393921,false],[1.8854788541793823,true],[0.249663308262825,false],[-0.8619526028633118,false],[1.9995672702789307,true],[1.0939114093780518,false],[0.6106101870536804,false],[1.8383781909942627,false],[-0.0637127161026001,false],[-0.34953051805496216,false],[0.988452672958374,false],[0.5209289193153381,false],[-0.4708566963672638,false],[0.4715256690979004,false],[-0.7905446887016296,false],[2.0255637168884277,true],[0.8488644361495972,false],[1.6645262241363525,true],[1.0948383808135986,true],[-0.8315924406051636,false],[1.5533114671707153,true],[0.9333463907241821,true],[-0.5723654627799988,false],[1.9510998725891113,true],[0.2842162549495697,false],[1.1901239156723022,false],[1.5058742761611938,false],[0.7622374296188354,false],[0.2894713282585144,false],[0.0965774804353714,false],[0.6335093379020691,false],[-0.7369110584259033,false],[1.2673722505569458,true],[0.9775630235671997,false],[0.7889275550842285,false],[-0.9432369470596313,false],[0.24122865498065948,false],[1.075297474861145,false],[0.545269250869751,false],[-0.1398508995771408,false],[-0.31118375062942505,false],[1.47971510887146,false],[0.5115379691123962,true],[0.8894630074501038,true],[0.4365079700946808,true],[2.5944597721099854,true],[0.8613907694816589,false],[1.1540073156356812,false],[1.6798168420791626,true],[1.5266021490097046,true],[0.2556634545326233,false],[0.90388423204422,false],[0.36393579840660095,false],[1.297504186630249,true],[1.091887354850769,true],[0.931088924407959,true],[0.8854649066925049,true],[0.0385725162923336,false],[1.5259686708450317,true],[-0.725635826587677,false],[-1.72086501121521,false],[1.9044498205184937,true],[-0.10369344800710678,false],[-0.5889104604721069,true],[0.2478746473789215,false],[1.4628609418869019,false],[1.1434470415115356,false],[0.20635242760181427,false],[0.8324120044708252,false],[0.676543653011322,false],[1.1111537218093872,true],[0.0488731786608696,false],[0.8705015182495117,true],[0.5464357733726501,true],[0.6190940737724304,true],[0.33756133913993835,false],[0.8019527196884155,true],[1.1540179252624512,true],[-1.4343260526657104,true],[1.4069069623947144,true],[0.5078597664833069,true],[0.1831521838903427,false],[-0.5352457761764526,false],[1.3706591129302979,true],[-0.8636290431022644,false],[0.8164027333259583,false],[0.6665022969245911,false],[0.5028047561645508,false],[-0.7765756845474243,false],[1.204775333404541,false],[1.2527906894683838,false],[0.7420544028282166,false],[1.0363034009933472,true],[1.0559784173965454,false],[-0.72457355260849,false],[1.9217685461044312,true],[0.9770780205726624,false],[0.8808136582374573,true],[1.0174754858016968,false],[0.4287119507789612,false],[1.0718724727630615,true],[0.8409612774848938,true],[-1.3366127014160156,false]]") | ||
data = sorted(data, reverse=True) | ||
|
||
tprs, fprs = [], [] | ||
positives = sum(1 for _, ground_truth in data if ground_truth) | ||
negatives = len(data) - positives | ||
|
||
for threshold, _ in data: | ||
tp = sum(1 for score, ground_truth in data if ground_truth and score >= threshold) | ||
fp = sum(1 for score, ground_truth in data if not ground_truth and score >= threshold) | ||
tpr = tp / positives | ||
fpr = fp / negatives | ||
tprs.append(tpr) | ||
fprs.append(fpr) | ||
|
||
auroc = 0 | ||
for i in range(len(fprs) - 1): | ||
auroc += (fprs[i+1] - fprs[i]) * (tprs[i+1] + tprs[i]) / 2 | ||
|
||
print(f"AUROC: {auroc}") | ||
|
||
plt.plot(fprs, tprs) | ||
|
||
plt.xlabel("FPR") | ||
plt.ylabel("TPR") | ||
plt.title("ROC") | ||
|
||
plt.tight_layout() | ||
plt.show() |