Skip to content

Commit

Permalink
Adapt doctests to new printing for maps Nemocas/AbstractAlgebra.jl#1424
Browse files Browse the repository at this point in the history
  • Loading branch information
lgoettgens committed Sep 14, 2023
1 parent 56d491e commit 3acf034
Show file tree
Hide file tree
Showing 8 changed files with 27 additions and 215 deletions.
54 changes: 3 additions & 51 deletions experimental/QuadFormAndIsom/src/lattices_with_isometry.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1043,19 +1043,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, inj = direct_sum(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10, Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down Expand Up @@ -1136,19 +1124,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, proj = direct_product(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5, Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down Expand Up @@ -1232,31 +1208,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, inj, proj = biproduct(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10, Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10], AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5, Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space], AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down
54 changes: 3 additions & 51 deletions experimental/QuadFormAndIsom/src/spaces_with_isometry.jl
Original file line number Diff line number Diff line change
Expand Up @@ -510,19 +510,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, inj = direct_sum(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4, Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down Expand Up @@ -605,19 +593,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, proj = direct_product(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2, Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down Expand Up @@ -701,31 +677,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, inj, proj = biproduct(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4, Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4], AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2, Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space], AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -270,13 +270,7 @@ Projective space of dimension 2
with homogeneous coordinates [x, y, z]
julia> affine_cone(P)
(Spec of quotient of multivariate polynomial ring, Map with following data
Domain:
=======
S
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 1 generator)
(Spec of quotient of multivariate polynomial ring, Map: graded multivariate polynomial ring -> quotient of multivariate polynomial ring)
```
"""
affine_cone(P::AbsProjectiveScheme)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -648,13 +648,7 @@ Return the map from the character lattice to the group of principal divisors of
julia> p2 = projective_space(NormalToricVariety, 2);
julia> map_from_character_lattice_to_torusinvariant_weil_divisor_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^2
Codomain:
=========
Abelian group with structure: Z^3
Map: GrpAb: Z^2 -> GrpAb: Z^3
```
"""
@attr GrpAbFinGenMap function map_from_character_lattice_to_torusinvariant_weil_divisor_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -717,13 +711,7 @@ Return the map from the group of Weil divisors to the class of group of a normal
julia> p2 = projective_space(NormalToricVariety, 2);
julia> map_from_torusinvariant_weil_divisor_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: GrpAb: Z^3 -> GrpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_weil_divisor_group_to_class_group(v::NormalToricVarietyType)
Expand All @@ -745,13 +733,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z^3
Map: GrpAb: Z^3 -> GrpAb: Z^3
```
"""
@attr Map{GrpAbFinGen, GrpAbFinGen} function map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -845,13 +827,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: GrpAb: Z^3 -> GrpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_cartier_divisor_group_to_class_group(v::NormalToricVarietyType)
Expand All @@ -876,13 +852,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_picard_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: GrpAb: Z^3 -> GrpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_cartier_divisor_group_to_picard_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -925,13 +895,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_picard_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z
Codomain:
=========
Abelian group with structure: Z
Map: GrpAb: Z -> GrpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_picard_group_to_class_group(v::NormalToricVarietyType)
Expand Down
40 changes: 5 additions & 35 deletions src/AlgebraicGeometry/ToricVarieties/ToricMorphisms/attributes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,13 +43,7 @@ julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal, non-affine, smooth, projective, gorenstein, non-fano, 2-dimensional toric variety without torusfactor
julia> grid_morphism(toric_identity_morphism(F4))
Map with following data
Domain:
=======
Abelian group with structure: Z^2
Codomain:
=========
Abelian group with structure: Z^2
Map: GrpAb: Z^2 -> GrpAb: Z^2
```
"""
grid_morphism(tm::ToricMorphism) = tm.grid_morphism
Expand All @@ -67,13 +61,7 @@ julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal, non-affine, smooth, projective, gorenstein, non-fano, 2-dimensional toric variety without torusfactor
julia> morphism_on_torusinvariant_weil_divisor_group(toric_identity_morphism(F4))
Map with following data
Domain:
=======
Abelian group with structure: Z^4
Codomain:
=========
Abelian group with structure: Z^4
Map: GrpAb: Z^4 -> GrpAb: Z^4
```
"""
@attr GrpAbFinGenMap function morphism_on_torusinvariant_weil_divisor_group(tm::ToricMorphism)
Expand Down Expand Up @@ -104,13 +92,7 @@ julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal, non-affine, smooth, projective, gorenstein, non-fano, 2-dimensional toric variety without torusfactor
julia> morphism_on_torusinvariant_cartier_divisor_group(toric_identity_morphism(F4))
Map with following data
Domain:
=======
Abelian group with structure: Z^4
Codomain:
=========
Abelian group with structure: Z^4
Map: GrpAb: Z^4 -> GrpAb: Z^4
```
"""
@attr GrpAbFinGenMap function morphism_on_torusinvariant_cartier_divisor_group(tm::ToricMorphism)
Expand All @@ -135,13 +117,7 @@ julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal, non-affine, smooth, projective, gorenstein, non-fano, 2-dimensional toric variety without torusfactor
julia> morphism_on_class_group(toric_identity_morphism(F4))
Map with following data
Domain:
=======
Abelian group with structure: Z^2
Codomain:
=========
Abelian group with structure: Z^2
Map: GrpAb: Z^2 -> GrpAb: Z^2
```
"""
@attr GrpAbFinGenMap function morphism_on_class_group(tm::ToricMorphism)
Expand All @@ -166,13 +142,7 @@ julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal, non-affine, smooth, projective, gorenstein, non-fano, 2-dimensional toric variety without torusfactor
julia> morphism_on_picard_group(toric_identity_morphism(F4))
Map with following data
Domain:
=======
Abelian group with structure: Z^2
Codomain:
=========
Abelian group with structure: Z^2
Map: GrpAb: Z^2 -> GrpAb: Z^2
```
"""
@attr GrpAbFinGenMap function morphism_on_picard_group(tm::ToricMorphism)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,13 +85,7 @@ julia> mapping_matrix = matrix(ZZ, [[0, 1]])
[0 1]
julia> grid_morphism = hom(character_lattice(domain), character_lattice(codomain), mapping_matrix)
Map with following data
Domain:
=======
Abelian group with structure: Z
Codomain:
=========
Abelian group with structure: Z^2
Map: GrpAb: Z -> GrpAb: Z^2
julia> toric_morphism(domain, grid_morphism, codomain)
A toric morphism
Expand Down
10 changes: 2 additions & 8 deletions src/Rings/MPolyMap/MPolyRing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ defined by
x -> y
y -> x
with map on coefficients
#1
#1
julia> F(a * y)
(a + 1)*x
Expand All @@ -77,13 +77,7 @@ defined by
x -> x^2
y -> y^2
with map on coefficients
Map with following data
Domain:
=======
Qi
Codomain:
=========
Qi
Map: imaginary quadratic field defined by x^2 + 1 -> imaginary quadratic field defined by x^2 + 1
julia> G(x+i*y)
x^2 - sqrt(-1)*y^2
Expand Down
Loading

0 comments on commit 3acf034

Please sign in to comment.