Skip to content

Commit

Permalink
Adapt doctests to new printing for maps Nemocas/AbstractAlgebra.jl#1424
Browse files Browse the repository at this point in the history
  • Loading branch information
lgoettgens committed Sep 13, 2023
1 parent 4f8e757 commit 15f1ea6
Show file tree
Hide file tree
Showing 15 changed files with 44 additions and 340 deletions.
56 changes: 7 additions & 49 deletions docs/src/CommutativeAlgebra/affine_algebras.md
Original file line number Diff line number Diff line change
Expand Up @@ -357,13 +357,7 @@ julia> C1, (s,t) = graded_polynomial_ring(QQ, ["s", "t"]);
julia> V1 = [s^3, s^2*t, s*t^2, t^3];
julia> para = hom(D1, C1, V1)
Map with following data
Domain:
=======
Graded multivariate polynomial ring in 4 variables over QQ
Codomain:
=========
Graded multivariate polynomial ring in 2 variables over QQ
Map: graded multivariate polynomial ring -> graded multivariate polynomial ring
julia> twistedCubic = kernel(para)
ideal(-x*z + y^2, -w*z + x*y, -w*y + x^2)
Expand All @@ -375,13 +369,7 @@ julia> D2, (a, b, c) = graded_polynomial_ring(QQ, ["a", "b", "c"]);
julia> V2 = [p2(w-y), p2(x), p2(z)];
julia> proj = hom(D2, C2, V2)
Map with following data
Domain:
=======
Graded multivariate polynomial ring in 3 variables over QQ
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 3 generators
Map: graded multivariate polynomial ring -> quotient of multivariate polynomial ring
julia> nodalCubic = kernel(proj)
ideal(-a^2*c + b^3 - 2*b^2*c + b*c^2)
Expand All @@ -396,13 +384,7 @@ julia> C3, x = polynomial_ring(QQ, "x" => 1:3);
julia> V3 = [x[1]*x[2], x[1]*x[3], x[2]*x[3]];
julia> F3 = hom(D3, C3, V3)
Map with following data
Domain:
=======
Multivariate polynomial ring in 3 variables over QQ
Codomain:
=========
Multivariate polynomial ring in 3 variables over QQ
Map: multivariate polynomial ring -> multivariate polynomial ring
julia> sphere = ideal(C3, [x[1]^3 + x[2]^3 + x[3]^3 - 1])
ideal(x[1]^3 + x[2]^3 + x[3]^3 - 1)
Expand Down Expand Up @@ -434,13 +416,7 @@ julia> C, p = quo(S, ideal(S, [c-b^3]));
julia> V = [p(2*a + b^6), p(7*b - a^2), p(c^2)];
julia> F = hom(D, C, V)
Map with following data
Domain:
=======
Multivariate polynomial ring in 3 variables over QQ
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 1 generator
Map: multivariate polynomial ring -> quotient of multivariate polynomial ring
julia> is_surjective(F)
true
Expand All @@ -462,13 +438,7 @@ julia> C, (s, t) = polynomial_ring(QQ, ["s", "t"]);
julia> V = [s*t, t, s^2];
julia> paraWhitneyUmbrella = hom(R, C, V)
Map with following data
Domain:
=======
Multivariate polynomial ring in 3 variables over QQ
Codomain:
=========
Multivariate polynomial ring in 2 variables over QQ
Map: multivariate polynomial ring -> multivariate polynomial ring
julia> D, _ = quo(R, kernel(paraWhitneyUmbrella));
Expand Down Expand Up @@ -517,22 +487,10 @@ julia> L[1]
-5*y + z
julia> L[2]
Map with following data
Domain:
=======
Quotient of multivariate polynomial ring by ideal with 2 generators
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 2 generators
Map: quotient of multivariate polynomial ring -> quotient of multivariate polynomial ring
julia> L[3]
Map with following data
Domain:
=======
Quotient of multivariate polynomial ring by ideal with 2 generators
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 2 generators
Map: quotient of multivariate polynomial ring -> quotient of multivariate polynomial ring
```
## Normalization
Expand Down
54 changes: 3 additions & 51 deletions experimental/QuadFormAndIsom/src/lattices_with_isometry.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1043,19 +1043,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, inj = direct_sum(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10, Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down Expand Up @@ -1136,19 +1124,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, proj = direct_product(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5, Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down Expand Up @@ -1232,31 +1208,7 @@ Integer lattice of rank 5 and degree 5
[0 0 0 1 0]
julia> Lh, inj, proj = biproduct(Lf, Lg)
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10, Map with following data
Domain:
=======
Quadratic space of dimension 5
Codomain:
=========
Quadratic space of dimension 10], AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5, Map with following data
Domain:
=======
Quadratic space of dimension 10
Codomain:
=========
Quadratic space of dimension 5])
(Integer lattice with isometry of finite order 10, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space], AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Lh
Integer lattice of rank 10 and degree 10
Expand Down
54 changes: 3 additions & 51 deletions experimental/QuadFormAndIsom/src/spaces_with_isometry.jl
Original file line number Diff line number Diff line change
Expand Up @@ -510,19 +510,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, inj = direct_sum(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4, Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down Expand Up @@ -605,19 +593,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, proj = direct_product(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2, Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down Expand Up @@ -701,31 +677,7 @@ Quadratic space of dimension 2
[0 -1]
julia> Vf3, inj, proj = biproduct(Vf1, Vf2)
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4, Map with following data
Domain:
=======
Quadratic space of dimension 2
Codomain:
=========
Quadratic space of dimension 4], AbstractSpaceMor[Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2, Map with following data
Domain:
=======
Quadratic space of dimension 4
Codomain:
=========
Quadratic space of dimension 2])
(Quadratic space with isometry of finite order 2, AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space], AbstractSpaceMor[Map: quadratic space -> quadratic space, Map: quadratic space -> quadratic space])
julia> Vf3
Quadratic space of dimension 4
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -135,13 +135,7 @@ Spectrum
by ideal(x1)
julia> pullback(inclusion_morphism(X, Y))
Map with following data
Domain:
=======
Multivariate polynomial ring in 3 variables over QQ
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 1 generator
Map: multivariate polynomial ring -> quotient of multivariate polynomial ring
```
"""
pullback(f::AbsSpecMor) = pullback(underlying_morphism(f))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -270,13 +270,7 @@ Projective space of dimension 2
with homogeneous coordinates [x, y, z]
julia> affine_cone(P)
(Spec of quotient of multivariate polynomial ring, Map with following data
Domain:
=======
S
Codomain:
=========
Quotient of multivariate polynomial ring by ideal with 1 generator)
(Spec of quotient of multivariate polynomial ring, Map: graded multivariate polynomial ring -> quotient of multivariate polynomial ring)
```
"""
affine_cone(P::AbsProjectiveScheme)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -648,13 +648,7 @@ Return the map from the character lattice to the group of principal divisors of
julia> p2 = projective_space(NormalToricVariety, 2);
julia> map_from_character_lattice_to_torusinvariant_weil_divisor_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^2
Codomain:
=========
Abelian group with structure: Z^3
Map: grpAb: Z^2 -> grpAb: Z^3
```
"""
@attr GrpAbFinGenMap function map_from_character_lattice_to_torusinvariant_weil_divisor_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -717,13 +711,7 @@ Return the map from the group of Weil divisors to the class of group of a normal
julia> p2 = projective_space(NormalToricVariety, 2);
julia> map_from_torusinvariant_weil_divisor_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: grpAb: Z^3 -> grpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_weil_divisor_group_to_class_group(v::NormalToricVarietyType)
Expand All @@ -745,13 +733,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z^3
Map: grpAb: Z^3 -> grpAb: Z^3
```
"""
@attr Map{GrpAbFinGen, GrpAbFinGen} function map_from_torusinvariant_cartier_divisor_group_to_torusinvariant_weil_divisor_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -845,13 +827,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: grpAb: Z^3 -> grpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_cartier_divisor_group_to_class_group(v::NormalToricVarietyType)
Expand All @@ -876,13 +852,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_torusinvariant_cartier_divisor_group_to_picard_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z^3
Codomain:
=========
Abelian group with structure: Z
Map: grpAb: Z^3 -> grpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_torusinvariant_cartier_divisor_group_to_picard_group(v::NormalToricVarietyType)
Expand Down Expand Up @@ -925,13 +895,7 @@ julia> p2 = projective_space(NormalToricVariety, 2)
Normal, non-affine, smooth, projective, gorenstein, fano, 2-dimensional toric variety without torusfactor
julia> map_from_picard_group_to_class_group(p2)
Map with following data
Domain:
=======
Abelian group with structure: Z
Codomain:
=========
Abelian group with structure: Z
Map: grpAb: Z -> grpAb: Z
```
"""
@attr GrpAbFinGenMap function map_from_picard_group_to_class_group(v::NormalToricVarietyType)
Expand Down
Loading

0 comments on commit 15f1ea6

Please sign in to comment.