Skip to content

How to create metric visualisation when training #1989

Closed Answered by samet-akcay
lathashree01 asked this question in Q&A
Discussion options

You must be logged in to vote

Depending on your model and dataset, you should have image_ROC.png and pixel_ROC.png in the folder where images are saved. For example, here is my code;

from anomalib.data import MVTec
from anomalib.engine import Engine
from anomalib.models import Padim

datamodule = MVTec()
model = Padim()
engine = Engine()
engine.train(datamodule=datamodule, model=model)

This returns the following output:

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃        Test metric        ┃       DataLoader 0        ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│        image_AUROC        │    0.9992064237594604     │
│       image_F1Score       │    0.9841269850730896     │
│        pixe…

Replies: 2 comments 8 replies

Comment options

You must be logged in to vote
4 replies
@samet-akcay
Comment options

@lilruwu
Comment options

@samet-akcay
Comment options

@lilruwu
Comment options

Comment options

You must be logged in to vote
4 replies
@lilruwu
Comment options

@samet-akcay
Comment options

Answer selected by samet-akcay
@samet-akcay
Comment options

@lilruwu
Comment options

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
None yet
3 participants