Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport to main]updating docs for model group id (#980) #1262

Merged
merged 1 commit into from
Aug 29, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 67 additions & 15 deletions docs/model_serving_framework/text_embedding_model_examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@ If you want to run some testing models on data node, you can disable this cluste
```
PUT /_cluster/settings
{
"persistent" : {
"plugins.ml_commons.only_run_on_ml_node" : false
"persistent" : {
"plugins.ml_commons.only_run_on_ml_node" : false
}
}
```
Expand All @@ -32,8 +32,8 @@ For testing purpose, you can set `plugins.ml_commons.native_memory_threshold` as
```
PUT _cluster/settings
{
"persistent" : {
"plugins.ml_commons.native_memory_threshold" : 100
"persistent" : {
"plugins.ml_commons.native_memory_threshold" : 100
}
}
```
Expand All @@ -49,23 +49,41 @@ opensearch-py-ml code: [sentencetransformermodel.py#save_as_pt](https://github.c

Sentence transformer model already includes post-processing logic. So no need to specify `pooling_mode`/`normalize_result` when upload model.

From 2.6 release we are supporting to register pre-trained models.
And from 2.8, we need model group id to register model. More details about model group [here](../model_access_control.md)

- create a model group:
```
POST /_plugins/_ml/model_groups/_register
{
"name": "test_model_group_public",
"description": "This is a public model group"
}
```

# Sample response

```
{
"model_group_id": "7IjOsYgBFp6IJxCceZ1-",
"status": "CREATED"
}
```

Now we can use that model group id to register model.

- Step 1: upload model. This step will save model to model index.
```
# Sample request
POST /_plugins/_ml/models/_upload
POST /_plugins/_ml/models/_register
{
"name": "sentence-transformers/all-MiniLM-L6-v2",
"version": "1.0.0",
"description": "test model",
"model_format": "TORCH_SCRIPT",
"model_config": {
"model_type": "bert",
"embedding_dimension": 384,
"framework_type": "sentence_transformers"
},
"url": "https://github.com/opensearch-project/ml-commons/raw/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_sentence-transformer.zip?raw=true"
"name": "huggingface/sentence-transformers/all-MiniLM-L12-v2",
"version": "1.0.1",
"model_format": "TORCH_SCRIPT"
"model_group_id": "7IjOsYgBFp6IJxCceZ1-"
}


# Sample response
{
"task_id": "zgla5YUB1qmVrJFlwzW-",
Expand Down Expand Up @@ -93,6 +111,40 @@ GET /_plugins/_ml/tasks/zgla5YUB1qmVrJFlwzW-
"is_async": true
}
```

We can also register model from URL. To do that we need to update the following cluster settings:

```
PUT _cluster/settings
{
"persistent" : {
"plugins.ml_commons.allow_registering_model_via_url" : true
}
}
```

Now we can register model using URL upload:

```
POST /_plugins/_ml/models/_register
{
"name": "sentence-transformers/all-MiniLM-L6-v2",
"version": "1.0.1",
"description": "This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"model_task_type": "TEXT_EMBEDDING",
"model_format": "TORCH_SCRIPT",
"model_content_hash_value": "c15f0d2e62d872be5b5bc6c84d2e0f4921541e29fefbef51d59cc10a8ae30e0f",
"model_config": {
"model_type": "bert",
"embedding_dimension": 384,
"framework_type": "sentence_transformers",
"all_config": "{\"_name_or_path\":\"nreimers/MiniLM-L6-H384-uncased\",\"architectures\":[\"BertModel\"],\"attention_probs_dropout_prob\":0.1,\"gradient_checkpointing\":false,\"hidden_act\":\"gelu\",\"hidden_dropout_prob\":0.1,\"hidden_size\":384,\"initializer_range\":0.02,\"intermediate_size\":1536,\"layer_norm_eps\":1e-12,\"max_position_embeddings\":512,\"model_type\":\"bert\",\"num_attention_heads\":12,\"num_hidden_layers\":6,\"pad_token_id\":0,\"position_embedding_type\":\"absolute\",\"transformers_version\":\"4.8.2\",\"type_vocab_size\":2,\"use_cache\":true,\"vocab_size\":30522}"
},
"model_group_id": "7IjOsYgBFp6IJxCceZ1-",
"url": "https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip"
}
```

- Step 2: deploy/load model. This step will read model content from index and deploy to node.

```
Expand Down