-
Notifications
You must be signed in to change notification settings - Fork 502
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
root
committed
Jun 11, 2018
1 parent
1eca568
commit f7c1330
Showing
19 changed files
with
40,859 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import os | ||
import json | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from sklearn.metrics import accuracy_score | ||
|
||
from datasets import _rocstories | ||
|
||
def rocstories(data_dir, pred_path, log_path): | ||
preds = pd.read_csv(pred_path, delimiter='\t')['prediction'].values.tolist() | ||
_, _, _, labels = _rocstories(os.path.join(data_dir, 'cloze_test_test__spring2016 - cloze_test_ALL_test.csv')) | ||
test_accuracy = accuracy_score(labels, preds)*100. | ||
logs = [json.loads(line) for line in open(log_path)][1:] | ||
best_validation_index = np.argmax([log['va_acc'] for log in logs]) | ||
valid_accuracy = logs[best_validation_index]['va_acc'] | ||
print('ROCStories Valid Accuracy: %.2f'%(valid_accuracy)) | ||
print('ROCStories Test Accuracy: %.2f'%(test_accuracy)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
import os | ||
import csv | ||
import numpy as np | ||
|
||
from tqdm import tqdm | ||
|
||
from sklearn.utils import shuffle | ||
from sklearn.model_selection import train_test_split | ||
|
||
seed = 3535999445 | ||
|
||
def _rocstories(path): | ||
with open(path) as f: | ||
f = csv.reader(f) | ||
st = [] | ||
ct1 = [] | ||
ct2 = [] | ||
y = [] | ||
for i, line in enumerate(tqdm(list(f), ncols=80, leave=False)): | ||
if i > 0: | ||
s = ' '.join(line[1:5]) | ||
c1 = line[5] | ||
c2 = line[6] | ||
st.append(s) | ||
ct1.append(c1) | ||
ct2.append(c2) | ||
y.append(int(line[-1])-1) | ||
return st, ct1, ct2, y | ||
|
||
def rocstories(data_dir, n_train=1497, n_valid=374): | ||
storys, comps1, comps2, ys = _rocstories(os.path.join(data_dir, 'cloze_test_val__spring2016 - cloze_test_ALL_val.csv')) | ||
teX1, teX2, teX3, _ = _rocstories(os.path.join(data_dir, 'cloze_test_test__spring2016 - cloze_test_ALL_test.csv')) | ||
tr_storys, va_storys, tr_comps1, va_comps1, tr_comps2, va_comps2, tr_ys, va_ys = train_test_split(storys, comps1, comps2, ys, test_size=n_valid, random_state=seed) | ||
trX1, trX2, trX3 = [], [], [] | ||
trY = [] | ||
for s, c1, c2, y in zip(tr_storys, tr_comps1, tr_comps2, tr_ys): | ||
trX1.append(s) | ||
trX2.append(c1) | ||
trX3.append(c2) | ||
trY.append(y) | ||
|
||
vaX1, vaX2, vaX3 = [], [], [] | ||
vaY = [] | ||
for s, c1, c2, y in zip(va_storys, va_comps1, va_comps2, va_ys): | ||
vaX1.append(s) | ||
vaX2.append(c1) | ||
vaX3.append(c2) | ||
vaY.append(y) | ||
trY = np.asarray(trY, dtype=np.int32) | ||
vaY = np.asarray(vaY, dtype=np.int32) | ||
return (trX1, trX2, trX3, trY), (vaX1, vaX2, vaX3, vaY), (teX1, teX2, teX3) |
Oops, something went wrong.