Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Metric SDK: Sum duplicate async observations regardless of filtering #4289

Merged
merged 3 commits into from
Jul 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.htm
The `AttributeKeys` fields allows users to specify an allow-list of attributes allowed to be recorded for a view.
This change is made to ensure compatibility with the OpenTelemetry specification. (#4288)
- If an attribute set is omitted from an async callback, the previous value will no longer be exported. (#4290)
- If an attribute set is Observed multiple times in an async callback, the values will be summed instead of the last observation winning. (#4289)
dashpole marked this conversation as resolved.
Show resolved Hide resolved
- Allow the explicit bucket histogram aggregation to be used for the up-down counter, observable counter, observable up-down counter, and observable gauge in the `go.opentelemetry.io/otel/sdk/metric` package. (#4332)
- Restrict `Meter`s in `go.opentelemetry.io/otel/sdk/metric` to only register and collect instruments it created. (#4333)

Expand Down
19 changes: 0 additions & 19 deletions sdk/metric/internal/aggregate/aggregator.go
Original file line number Diff line number Diff line change
Expand Up @@ -38,22 +38,3 @@ type aggregator[N int64 | float64] interface {
// measurements made and ends an aggregation cycle.
Aggregation() metricdata.Aggregation
}

// precomputeAggregator is an Aggregator that receives values to aggregate that
// have been pre-computed by the caller.
type precomputeAggregator[N int64 | float64] interface {
// The Aggregate method of the embedded Aggregator is used to record
// pre-computed measurements, scoped by attributes that have not been
// filtered by an attribute filter.
aggregator[N]

// aggregateFiltered records measurements scoped by attributes that have
// been filtered by an attribute filter.
//
// Pre-computed measurements of filtered attributes need to be recorded
// separate from those that haven't been filtered so they can be added to
// the non-filtered pre-computed measurements in a collection cycle and
// then resets after the cycle (the non-filtered pre-computed measurements
// are not reset).
aggregateFiltered(N, attribute.Set)
}
43 changes: 0 additions & 43 deletions sdk/metric/internal/aggregate/filter.go
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,6 @@ func newFilter[N int64 | float64](agg aggregator[N], fn attribute.Filter) aggreg
if fn == nil {
return agg
}
if fa, ok := agg.(precomputeAggregator[N]); ok {
return newPrecomputedFilter(fa, fn)
}
return &filter[N]{
filter: fn,
aggregator: agg,
Expand Down Expand Up @@ -59,43 +56,3 @@ func (f *filter[N]) Aggregate(measurement N, attr attribute.Set) {
func (f *filter[N]) Aggregation() metricdata.Aggregation {
return f.aggregator.Aggregation()
}

// precomputedFilter is an aggregator that applies attribute filter when
// Aggregating for pre-computed Aggregations. The pre-computed Aggregations
// need to operate normally when no attribute filtering is done (for sums this
// means setting the value), but when attribute filtering is done it needs to
// be added to any set value.
type precomputedFilter[N int64 | float64] struct {
filter attribute.Filter
aggregator precomputeAggregator[N]
}

// newPrecomputedFilter returns a precomputedFilter Aggregator that wraps agg
// with the attribute filter fn.
//
// This should not be used to wrap a non-pre-computed Aggregator. Use a
// precomputedFilter instead.
func newPrecomputedFilter[N int64 | float64](agg precomputeAggregator[N], fn attribute.Filter) *precomputedFilter[N] {
return &precomputedFilter[N]{
filter: fn,
aggregator: agg,
}
}

// Aggregate records the measurement, scoped by attr, and aggregates it
// into an aggregation.
func (f *precomputedFilter[N]) Aggregate(measurement N, attr attribute.Set) {
fAttr, _ := attr.Filter(f.filter)
if fAttr.Equals(&attr) {
// No filtering done.
f.aggregator.Aggregate(measurement, fAttr)
} else {
f.aggregator.aggregateFiltered(measurement, fAttr)
}
}

// Aggregation returns an Aggregation, for all the aggregated
// measurements made and ends an aggregation cycle.
func (f *precomputedFilter[N]) Aggregation() metricdata.Aggregation {
return f.aggregator.Aggregation()
}
89 changes: 0 additions & 89 deletions sdk/metric/internal/aggregate/filter_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,6 @@
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"

import (
"fmt"
"strings"
"sync"
"testing"

Expand Down Expand Up @@ -196,90 +194,3 @@ func TestFilterConcurrent(t *testing.T) {
testFilterConcurrent[float64](t)
})
}

func TestPrecomputedFilter(t *testing.T) {
t.Run("Int64", testPrecomputedFilter[int64]())
t.Run("Float64", testPrecomputedFilter[float64]())
}

func testPrecomputedFilter[N int64 | float64]() func(t *testing.T) {
return func(t *testing.T) {
agg := newTestFilterAgg[N]()
f := newFilter[N](agg, testAttributeFilter)
require.IsType(t, &precomputedFilter[N]{}, f)

var (
powerLevel = attribute.Int("power-level", 9000)
user = attribute.String("user", "Alice")
admin = attribute.Bool("admin", true)
)
a := attribute.NewSet(powerLevel)
key := a
f.Aggregate(1, a)
assert.Equal(t, N(1), agg.values[key].measured, str(a))
assert.Equal(t, N(0), agg.values[key].filtered, str(a))

a = attribute.NewSet(powerLevel, user)
f.Aggregate(2, a)
assert.Equal(t, N(1), agg.values[key].measured, str(a))
assert.Equal(t, N(2), agg.values[key].filtered, str(a))

a = attribute.NewSet(powerLevel, user, admin)
f.Aggregate(3, a)
assert.Equal(t, N(1), agg.values[key].measured, str(a))
assert.Equal(t, N(5), agg.values[key].filtered, str(a))

a = attribute.NewSet(powerLevel)
f.Aggregate(2, a)
assert.Equal(t, N(2), agg.values[key].measured, str(a))
assert.Equal(t, N(5), agg.values[key].filtered, str(a))

a = attribute.NewSet(user)
f.Aggregate(3, a)
assert.Equal(t, N(2), agg.values[key].measured, str(a))
assert.Equal(t, N(5), agg.values[key].filtered, str(a))
assert.Equal(t, N(3), agg.values[*attribute.EmptySet()].filtered, str(a))

_ = f.Aggregation()
assert.Equal(t, 1, agg.aggregationN, "failed to propagate Aggregation")
}
}

func str(a attribute.Set) string {
iter := a.Iter()
out := make([]string, 0, iter.Len())
for iter.Next() {
kv := iter.Attribute()
out = append(out, fmt.Sprintf("%s:%#v", kv.Key, kv.Value.AsInterface()))
}
return strings.Join(out, ",")
}

type testFilterAgg[N int64 | float64] struct {
values map[attribute.Set]precomputedValue[N]
aggregationN int
}

func newTestFilterAgg[N int64 | float64]() *testFilterAgg[N] {
return &testFilterAgg[N]{
values: make(map[attribute.Set]precomputedValue[N]),
}
}

func (a *testFilterAgg[N]) Aggregate(val N, attr attribute.Set) {
v := a.values[attr]
v.measured = val
a.values[attr] = v
}

// nolint: unused // Used to agg filtered.
func (a *testFilterAgg[N]) aggregateFiltered(val N, attr attribute.Set) {
v := a.values[attr]
v.filtered += val
a.values[attr] = v
}

func (a *testFilterAgg[N]) Aggregation() metricdata.Aggregation {
a.aggregationN++
return nil
}
82 changes: 12 additions & 70 deletions sdk/metric/internal/aggregate/sum.go
Original file line number Diff line number Diff line change
Expand Up @@ -150,63 +150,6 @@ func (s *cumulativeSum[N]) Aggregation() metricdata.Aggregation {
return out
}

// precomputedValue is the recorded measurement value for a set of attributes.
type precomputedValue[N int64 | float64] struct {
// measured is the last value measured for a set of attributes that were
// not filtered.
measured N
// filtered is the sum of values from measurements that had their
// attributes filtered.
filtered N
}

// precomputedMap is the storage for precomputed sums.
type precomputedMap[N int64 | float64] struct {
sync.Mutex
values map[attribute.Set]precomputedValue[N]
}

func newPrecomputedMap[N int64 | float64]() *precomputedMap[N] {
return &precomputedMap[N]{
values: make(map[attribute.Set]precomputedValue[N]),
}
}

// Aggregate records value with the unfiltered attributes attr.
//
// If a previous measurement was made for the same attribute set:
//
// - If that measurement's attributes were not filtered, this value overwrite
// that value.
// - If that measurement's attributes were filtered, this value will be
// recorded along side that value.
func (s *precomputedMap[N]) Aggregate(value N, attr attribute.Set) {
s.Lock()
v := s.values[attr]
v.measured = value
s.values[attr] = v
s.Unlock()
}

// aggregateFiltered records value with the filtered attributes attr.
//
// If a previous measurement was made for the same attribute set:
//
// - If that measurement's attributes were not filtered, this value will be
// recorded along side that value.
// - If that measurement's attributes were filtered, this value will be
// added to it.
//
// This method should not be used if attr have not been reduced by an attribute
// filter.
func (s *precomputedMap[N]) aggregateFiltered(value N, attr attribute.Set) { // nolint: unused // Used to agg filtered.
s.Lock()
v := s.values[attr]
v.filtered += value
s.values[attr] = v
s.Unlock()
}

// newPrecomputedDeltaSum returns an Aggregator that summarizes a set of
// pre-computed sums. Each sum is scoped by attributes and the aggregation
// cycle the measurements were made in.
Expand All @@ -218,17 +161,17 @@ func (s *precomputedMap[N]) aggregateFiltered(value N, attr attribute.Set) { //
// The output Aggregation will report recorded values as delta temporality.
func newPrecomputedDeltaSum[N int64 | float64](monotonic bool) aggregator[N] {
return &precomputedDeltaSum[N]{
precomputedMap: newPrecomputedMap[N](),
reported: make(map[attribute.Set]N),
monotonic: monotonic,
start: now(),
valueMap: newValueMap[N](),
reported: make(map[attribute.Set]N),
monotonic: monotonic,
start: now(),
}
}

// precomputedDeltaSum summarizes a set of pre-computed sums recorded over all
// aggregation cycles as the delta of these sums.
type precomputedDeltaSum[N int64 | float64] struct {
*precomputedMap[N]
*valueMap[N]

reported map[attribute.Set]N

Expand Down Expand Up @@ -263,15 +206,14 @@ func (s *precomputedDeltaSum[N]) Aggregation() metricdata.Aggregation {
DataPoints: make([]metricdata.DataPoint[N], 0, len(s.values)),
}
for attr, value := range s.values {
v := value.measured + value.filtered
delta := v - s.reported[attr]
delta := value - s.reported[attr]
out.DataPoints = append(out.DataPoints, metricdata.DataPoint[N]{
Attributes: attr,
StartTime: s.start,
Time: t,
Value: delta,
})
newReported[attr] = v
newReported[attr] = value
// Unused attribute sets do not report.
delete(s.values, attr)
}
Expand All @@ -294,15 +236,15 @@ func (s *precomputedDeltaSum[N]) Aggregation() metricdata.Aggregation {
// temporality.
func newPrecomputedCumulativeSum[N int64 | float64](monotonic bool) aggregator[N] {
return &precomputedCumulativeSum[N]{
precomputedMap: newPrecomputedMap[N](),
monotonic: monotonic,
start: now(),
valueMap: newValueMap[N](),
monotonic: monotonic,
start: now(),
}
}

// precomputedCumulativeSum directly records and reports a set of pre-computed sums.
type precomputedCumulativeSum[N int64 | float64] struct {
*precomputedMap[N]
*valueMap[N]

monotonic bool
start time.Time
Expand Down Expand Up @@ -337,7 +279,7 @@ func (s *precomputedCumulativeSum[N]) Aggregation() metricdata.Aggregation {
Attributes: attr,
StartTime: s.start,
Time: t,
Value: value.measured + value.filtered,
Value: value,
})
// Unused attribute sets do not report.
delete(s.values, attr)
Expand Down
Loading