Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix copypaste in yolov5-ins l/x config #756

Merged
merged 6 commits into from
May 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion configs/yolov5/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,11 +61,13 @@ YOLOv5-l-P6 model structure
| YOLOv5-s | P5 | 640 | Yes | Yes | 4.8 | 38.1 | 32.0 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542-3e570436.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542.log.json) |
| YOLOv5-s(non-overlap) | P5 | 640 | Yes | Yes | 4.8 | 38.0 | 32.1 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642.log.json) |
| YOLOv5-m | P5 | 640 | Yes | Yes | 7.3 | 45.1 | 37.3 | [config](./ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529.log.json) |
| YOLOv5-l | P5 | 640 | Yes | Yes | 10.7 | 48.8 | 39.9 | [config](./ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049.log.json) |
| YOLOv5-x | P5 | 640 | Yes | Yes | 15.0 | 50.6 | 41.4 | [config](./ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925.log.json) |

**Note**:

1. `Non-overlap` refers to the instance-level masks being stored in the format (num_instances, h, w) instead of (h, w). Storing masks in overlap format consumes less memory and GPU memory.
2. We found that the mAP of the N/S/M model is higher than the official version, but the L/X model is lower than the official version. We will resolve this issue as soon as possible.
2. For the M model, the `affine_scale` parameter should be 0.9, but due to some reason, we set it to 0.5 and found that the mAP did not change. Therefore, the released M model has an `affine_scale` parameter of 0.5, which is inconsistent with the value of 0.9 in the configuration.

### VOC

Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,18 @@
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa

# This config use refining bbox and `YOLOv5CopyPaste`.
# Refining bbox means refining bbox by mask while loading annotations and
# transforming after `YOLOv5RandomAffine`
# ========================modified parameters======================
deepen_factor = 1.0
widen_factor = 1.0

mixup_prob = 0.1
copypaste_prob = 0.1

# =======================Unmodified in most cases==================
img_scale = _base_.img_scale

model = dict(
backbone=dict(
deepen_factor=deepen_factor,
Expand All @@ -13,3 +23,59 @@
widen_factor=widen_factor,
),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))

pre_transform = _base_.pre_transform
albu_train_transforms = _base_.albu_train_transforms
mosaic_affine_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
max_aspect_ratio=_base_.max_aspect_ratio,
use_mask_refine=_base_.use_mask2refine),
]

# enable mixup
train_pipeline = [
*pre_transform,
*mosaic_affine_pipeline,
dict(
type='YOLOv5MixUp',
prob=mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
# TODO: support mask transform in albu
# Geometric transformations are not supported in albu now.
dict(
type='mmdet.Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='Polygon2Mask',
downsample_ratio=_base_.downsample_ratio,
mask_overlap=_base_.mask_overlap),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]

train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@
deepen_factor = 0.67
widen_factor = 0.75
lr_factor = 0.1
affine_scale = 0.9
loss_cls_weight = 0.3
loss_obj_weight = 0.7

affine_scale = 0.9
mixup_prob = 0.1

# =======================Unmodified in most cases==================
Expand Down Expand Up @@ -43,8 +44,8 @@
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
max_aspect_ratio=_base_.max_aspect_ratio,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
_base_ = './yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa

deepen_factor = 1.33
widen_factor = 1.25
Expand Down
36 changes: 34 additions & 2 deletions configs/yolov5/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -296,9 +296,9 @@ Models:
Metrics:
mask AP: 32.1
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth
- Name: yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance
- Name: yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance.py
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 7.3
Epochs: 300
Expand All @@ -312,3 +312,35 @@ Models:
Metrics:
mask AP: 37.3
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth
- Name: yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 10.7
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 48.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.9
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth
- Name: yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 15.0
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 50.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.4
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth