Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhancement] Add Dev tools to boost develop #798

Merged
merged 43 commits into from
Sep 2, 2021

Conversation

clownrat6
Copy link
Contributor

@clownrat6 clownrat6 commented Aug 17, 2021

Add more dev tools to boost develop progress (Mainly for regression benchmark)

Goals:

  1. url check to find out invalid checkpoint url (log json url is contained but it's hacky.).
  2. more convenient model gather tool.
  3. test model inference of important model list.
  4. test model evaluation of important model list.
  5. test model training of important model list.

TODO:

  • url check tool: .dev/check_urls.py;
  • more convenient model gather tool: .dev/gather_models.py;
  • model-ckpt list and model_config list: .dev/batch_test_list.py & batch_train_list.txt;
  • model inference test tool: .dev/benchmark_inference.py;
  • model evaluation test tool script and script generator: .dev/benchmark_evaluation.sh & generate_benchmark_evaluation_script.py;
  • gather evaluation results and compare evaluation results tool: .dev/gather_benchmark_evaluation_results.py;
  • model training test tool scipt and script generator: .dev/benchmark_train.sh & generate_benchmark_train_script.py;
  • gather training results and compare training results tool: .dev/gather_benchmark_train_results.py;

@codecov
Copy link

codecov bot commented Aug 17, 2021

Codecov Report

Merging #798 (fcbd1f1) into master (2825efe) will not change coverage.
The diff coverage is n/a.

Impacted file tree graph

@@           Coverage Diff           @@
##           master     #798   +/-   ##
=======================================
  Coverage   88.90%   88.90%           
=======================================
  Files         110      110           
  Lines        5928     5928           
  Branches      950      950           
=======================================
  Hits         5270     5270           
  Misses        465      465           
  Partials      193      193           
Flag Coverage Δ
unittests 88.88% <ø> (ø)

Flags with carried forward coverage won't be shown. Click here to find out more.

Impacted Files Coverage Δ
mmseg/models/backbones/swin.py 87.41% <0.00%> (ø)
mmseg/models/backbones/resnet.py 99.28% <0.00%> (ø)
mmseg/models/backbones/resnest.py 83.72% <0.00%> (ø)
mmseg/models/backbones/resnext.py 100.00% <0.00%> (ø)
mmseg/models/backbones/fast_scnn.py 97.08% <0.00%> (ø)
mmseg/models/necks/multilevel_neck.py 100.00% <0.00%> (ø)
mmseg/models/backbones/mobilenet_v2.py 71.08% <0.00%> (ø)
mmseg/models/decode_heads/point_head.py 96.52% <0.00%> (ø)
mmseg/models/decode_heads/sep_fcn_head.py 100.00% <0.00%> (ø)

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 2825efe...fcbd1f1. Read the comment docs.

@clownrat6
Copy link
Contributor Author

clownrat6 commented Aug 19, 2021

A glance of benchmark model lists

.dev/batch_test_list.py:

hrnet = [
    dict(
        config='configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py',
        checkpoint='fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=33.0),
    ),
    dict(
        config='configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py',
        checkpoint='fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=76.31),
    ),
    dict(
        config='configs/hrnet/fcn_hr48_512x512_160k_ade20k.py',
        checkpoint='fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth',
        eval='mIoU',
        metric=dict(mIoU=42.02),
    ),
    dict(
        config='configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py',
        checkpoint='fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=80.65),
    ),
]
pspnet = [
    dict(
        config='configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py',
        checkpoint='pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=78.55),
    ),
    dict(
        config='configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py',
        checkpoint='pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=79.76),
    ),
    dict(
        config='configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py',
        checkpoint='pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=44.39),
    ),
    dict(
        config='configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py',
        checkpoint='pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=42.48),
    ),
]
resnest = [
    dict(
        config='configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py',
        checkpoint='pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=45.44),
    ),
    dict(
        config='configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py',
        checkpoint='pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=78.57),
    ),
]
fastscnn = [
    dict(
        config='configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py',
        checkpoint='fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth',
        eval='mIoU',
        metric=dict(mIoU=70.96),
    )
]
deeplabv3plus = [
    dict(
        config='configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py', # noqa
        checkpoint='deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=80.98),
    ),
    dict(
        config='configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py', # noqa
        checkpoint='deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=80.97),
    ),
    dict(
        config='configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py', # noqa
        checkpoint='deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=80.09),
    ),
    dict(
        config='configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py', # noqa
        checkpoint='deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=79.83),
    ),
]
vit = [
    dict(
        config='configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py',
        checkpoint='upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth',
        eval='mIoU',
        metric=dict(mIoU=47.73),
    ),
    dict(
        config='configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py',
        checkpoint='upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth',
        eval='mIoU',
        metric=dict(mIoU=43.52),
    ),
]
fp16 = [
    dict(
        config='configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py', # noqa
        checkpoint='deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=80.46),
    )
]
swin = [
    dict(
        config='configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py', # noqa
        checkpoint='upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', # noqa
        eval='mIoU',
        metric=dict(mIoU=44.41),
    )
]

@clownrat6 clownrat6 requested a review from Junjun2016 August 21, 2021 09:31
@clownrat6
Copy link
Contributor Author

Regression Benchmark Evaluation Results:
fcn_hr18s_512x512_160k_ade20k & fast_scnn_lr0.12_8x4_160k_cityscapes missing

{
    "configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py": {
        "differential": {
            "mIoU": "+0.02"
        },
        "previous": {
            "mIoU": 76.31
        },
        "new": {
            "mIoU": 76.33
        }
    },
    "configs/hrnet/fcn_hr48_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 42.02
        },
        "new": {
            "mIoU": 42.02
        }
    },
    "configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py": {
        "differential": {
            "mIoU": "+0.02"
        },
        "previous": {
            "mIoU": 80.65
        },
        "new": {
            "mIoU": 80.67
        }
    },
    "configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py": {
        "differential": {
            "mIoU": "+0.11"
        },
        "previous": {
            "mIoU": 78.55
        },
        "new": {
            "mIoU": 78.66
        }
    },
    "configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py": {
        "differential": {
            "mIoU": "-0.02"
        },
        "previous": {
            "mIoU": 79.76
        },
        "new": {
            "mIoU": 79.74
        }
    },
    "configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 44.39
        },
        "new": {
            "mIoU": 44.39
        }
    },
    "configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 42.48
        },
        "new": {
            "mIoU": 42.48
        }
    },
    "configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 45.44
        },
        "new": {
            "mIoU": 45.44
        }
    },
    "configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 78.57
        },
        "new": {
            "mIoU": 78.57
        }
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py": {
        "differential": {
            "mIoU": "-0.06"
        },
        "previous": {
            "mIoU": 80.98
        },
        "new": {
            "mIoU": 80.92
        }
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py": {
        "differential": {
            "mIoU": "+0.07"
        },
        "previous": {
            "mIoU": 80.97
        },
        "new": {
            "mIoU": 81.04
        }
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py": {
        "differential": {
            "mIoU": "-0.08"
        },
        "previous": {
            "mIoU": 80.09
        },
        "new": {
            "mIoU": 80.01
        }
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 79.83
        },
        "new": {
            "mIoU": 79.83
        }
    },
    "configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "+1.04"
        },
        "previous": {
            "mIoU": 47.73
        },
        "new": {
            "mIoU": 48.77
        }
    },
    "configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py": {
        "differential": {
            "mIoU": "+0.67"
        },
        "previous": {
            "mIoU": 43.52
        },
        "new": {
            "mIoU": 44.19
        }
    },
    "configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 80.46
        },
        "new": {
            "mIoU": 80.46
        }
    },
    "configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py": {
        "differential": {
            "mIoU": "-0.00"
        },
        "previous": {
            "mIoU": 44.41
        },
        "new": {
            "mIoU": 44.41
        }
    }
}

@clownrat6
Copy link
Contributor Author

Regression Benchmark Training Results:

{
    "configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py": {
        "mIoU": 32.9,
        "mAcc": 43.1,
        "aAcc": 76.9
    },
    "configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py": {
        "mIoU": 76.6,
        "mAcc": 84.5,
        "aAcc": 96.0
    },
    "configs/hrnet/fcn_hr48_512x512_160k_ade20k.py": {
        "mIoU": 42.0,
        "mAcc": 53.6,
        "aAcc": 80.2
    },
    "configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py": {
        "mIoU": 81.0,
        "mAcc": 87.9,
        "aAcc": 96.7
    },
    "configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 78.4,
        "mAcc": 85.2,
        "aAcc": 96.2
    },
    "configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 80.1,
        "mAcc": 87.1,
        "aAcc": 96.4
    },
    "configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py": {
        "mIoU": 43.8,
        "mAcc": 53.8,
        "aAcc": 81.2
    },
    "configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py": {
        "mIoU": 42.4,
        "mAcc": 52.2,
        "aAcc": 80.6
    },
    "configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py": {
        "mIoU": 44.6,
        "mAcc": 55.8,
        "aAcc": 81.2
    },
    "configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py": {
        "mIoU": 71.0,
        "mAcc": 78.8,
        "aAcc": 94.9
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py": {
        "mIoU": 81.0,
        "mAcc": 88.8,
        "aAcc": 96.5
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 81.1,
        "mAcc": 87.8,
        "aAcc": 96.6
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 80.6,
        "mAcc": 87.9,
        "aAcc": 96.5
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py": {
        "mIoU": 80.1,
        "mAcc": 88.4,
        "aAcc": 96.5
    },
    "configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py": {
        "mIoU": 48.1,
        "mAcc": 58.9,
        "aAcc": 82.6
    },
    "configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py": {
        "mIoU": 44.2,
        "mAcc": 55.2,
        "aAcc": 81.1
    },
    "configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py": {
        "mIoU": 80.7,
        "mAcc": 87.4,
        "aAcc": 96.5
    },
    "configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py": {
        "mIoU": 44.0,
        "mAcc": 55.0,
        "aAcc": 81.0
    }
}

@Junjun2016
Copy link
Collaborator

Regression Benchmark Training Results:

{
    "configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py": {
        "mIoU": 32.9,
        "mAcc": 43.1,
        "aAcc": 76.9
    },
    "configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py": {
        "mIoU": 76.6,
        "mAcc": 84.5,
        "aAcc": 96.0
    },
    "configs/hrnet/fcn_hr48_512x512_160k_ade20k.py": {
        "mIoU": 42.0,
        "mAcc": 53.6,
        "aAcc": 80.2
    },
    "configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py": {
        "mIoU": 81.0,
        "mAcc": 87.9,
        "aAcc": 96.7
    },
    "configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 78.4,
        "mAcc": 85.2,
        "aAcc": 96.2
    },
    "configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 80.1,
        "mAcc": 87.1,
        "aAcc": 96.4
    },
    "configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py": {
        "mIoU": 43.8,
        "mAcc": 53.8,
        "aAcc": 81.2
    },
    "configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py": {
        "mIoU": 42.4,
        "mAcc": 52.2,
        "aAcc": 80.6
    },
    "configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py": {
        "mIoU": 44.6,
        "mAcc": 55.8,
        "aAcc": 81.2
    },
    "configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py": {
        "mIoU": 71.0,
        "mAcc": 78.8,
        "aAcc": 94.9
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py": {
        "mIoU": 81.0,
        "mAcc": 88.8,
        "aAcc": 96.5
    },
    "configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 81.1,
        "mAcc": 87.8,
        "aAcc": 96.6
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py": {
        "mIoU": 80.6,
        "mAcc": 87.9,
        "aAcc": 96.5
    },
    "configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py": {
        "mIoU": 80.1,
        "mAcc": 88.4,
        "aAcc": 96.5
    },
    "configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py": {
        "mIoU": 48.1,
        "mAcc": 58.9,
        "aAcc": 82.6
    },
    "configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py": {
        "mIoU": 44.2,
        "mAcc": 55.2,
        "aAcc": 81.1
    },
    "configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py": {
        "mIoU": 80.7,
        "mAcc": 87.4,
        "aAcc": 96.5
    },
    "configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py": {
        "mIoU": 44.0,
        "mAcc": 55.0,
        "aAcc": 81.0
    }
}

Are the results in this file equal to the results of new in the above file?

@Junjun2016
Copy link
Collaborator

Hi @Sennnnn
Please fix the lint error.
update-model-index hook has been fixed.

Copy link
Collaborator

@Junjun2016 Junjun2016 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please resolve comments.

.dev/check_urls.py Outdated Show resolved Hide resolved
.dev/check_urls.py Show resolved Hide resolved
.dev/generate_benchmark_train_script.py Show resolved Hide resolved
.dev/gather_benchmark_train_results.py Outdated Show resolved Hide resolved
.dev/gather_models.py Outdated Show resolved Hide resolved
.dev/gather_models.py Outdated Show resolved Hide resolved
.dev/gather_models.py Outdated Show resolved Hide resolved
.dev/gather_models.py Show resolved Hide resolved
.dev/gather_benchmark_train_results.py Show resolved Hide resolved
.dev/check_urls.py Outdated Show resolved Hide resolved
Copy link
Collaborator

@Junjun2016 Junjun2016 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@Junjun2016 Junjun2016 requested a review from xvjiarui August 30, 2021 18:14
tools/train.py Outdated
Comment on lines 80 to 82
config_dir = osp.split(osp.dirname(args.config))[1]
config_name = osp.splitext(osp.basename(args.config))[0]
cfg.work_dir = osp.join('./work_dirs', config_dir, config_name)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please take the following case into consideration:

The user added 1 config file under the folder configs/, or directory under the root of repo. config_dir will become configs or MMSegmentation, which is not idea.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suggest keep this part unchanged.

tools/test.py Outdated
@@ -21,6 +23,9 @@ def parse_args():
description='mmseg test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
help='the directory to save the file containing evaluation metrics')
help='if specified, the evaluation metric results will be dumped into the directory as json')

Comment on lines 5 to 41
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr18s_512x512_160k_ade20k configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py $CHECKPOINT_DIR/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth --eval mIoU --work-dir .dev/benchmark_test/fcn_hr18s_512x512_160k_ade20k --options dist_params.port=28171 &
echo 'configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr18s_512x1024_160k_cityscapes configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py $CHECKPOINT_DIR/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth --eval mIoU --work-dir .dev/benchmark_test/fcn_hr18s_512x1024_160k_cityscapes --options dist_params.port=28172 &
echo 'configs/hrnet/fcn_hr48_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr48_512x512_160k_ade20k configs/hrnet/fcn_hr48_512x512_160k_ade20k.py $CHECKPOINT_DIR/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth --eval mIoU --work-dir .dev/benchmark_test/fcn_hr48_512x512_160k_ade20k --options dist_params.port=28173 &
echo 'configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr48_512x1024_160k_cityscapes configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py $CHECKPOINT_DIR/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth --eval mIoU --work-dir .dev/benchmark_test/fcn_hr48_512x1024_160k_cityscapes --options dist_params.port=28174 &
echo 'configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r50-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_r50-d8_512x1024_80k_cityscapes --options dist_params.port=28175 &
echo 'configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r101-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_r101-d8_512x1024_80k_cityscapes --options dist_params.port=28176 &
echo 'configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r101-d8_512x512_160k_ade20k configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_r101-d8_512x512_160k_ade20k --options dist_params.port=28177 &
echo 'configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r50-d8_512x512_160k_ade20k configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_r50-d8_512x512_160k_ade20k --options dist_params.port=28178 &
echo 'configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_s101-d8_512x512_160k_ade20k configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_s101-d8_512x512_160k_ade20k --options dist_params.port=28179 &
echo 'configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_s101-d8_512x1024_80k_cityscapes configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth --eval mIoU --work-dir .dev/benchmark_test/pspnet_s101-d8_512x1024_80k_cityscapes --options dist_params.port=28180 &
echo 'configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fast_scnn_lr0.12_8x4_160k_cityscapes configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py $CHECKPOINT_DIR/fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth --eval mIoU --work-dir .dev/benchmark_test/fast_scnn_lr0.12_8x4_160k_cityscapes --options dist_params.port=28181 &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth --eval mIoU --work-dir .dev/benchmark_test/deeplabv3plus_r101-d8_769x769_80k_cityscapes --options dist_params.port=28182 &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth --eval mIoU --work-dir .dev/benchmark_test/deeplabv3plus_r101-d8_512x1024_80k_cityscapes --options dist_params.port=28183 &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r50-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth --eval mIoU --work-dir .dev/benchmark_test/deeplabv3plus_r50-d8_512x1024_80k_cityscapes --options dist_params.port=28184 &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r50-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth --eval mIoU --work-dir .dev/benchmark_test/deeplabv3plus_r50-d8_769x769_80k_cityscapes --options dist_params.port=28185 &
echo 'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_vit-b16_ln_mln_512x512_160k_ade20k configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth --eval mIoU --work-dir .dev/benchmark_test/upernet_vit-b16_ln_mln_512x512_160k_ade20k --options dist_params.port=28186 &
echo 'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_deit-s16_ln_mln_512x512_160k_ade20k configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth --eval mIoU --work-dir .dev/benchmark_test/upernet_deit-s16_ln_mln_512x512_160k_ade20k --options dist_params.port=28187 &
echo 'configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth --eval mIoU --work-dir .dev/benchmark_test/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes --options dist_params.port=28188 &
echo 'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py $CHECKPOINT_DIR/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth --eval mIoU --work-dir .dev/benchmark_test/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K --options dist_params.port=28189 &
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We may specify work_dir for these scripts.

Copy link
Collaborator

@Junjun2016 Junjun2016 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

gather_model should also be modified.

@Junjun2016
Copy link
Collaborator

\ --> /

Copy link
Collaborator

@Junjun2016 Junjun2016 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@xvjiarui xvjiarui merged commit d35fbbd into open-mmlab:master Sep 2, 2021
bowenroom pushed a commit to bowenroom/mmsegmentation that referenced this pull request Feb 25, 2022
* Modify default work dir when training.

* Refactor gather_models.py.

* Add train and test matching list.

* Regression benchmark list.

* lower readme name to upper readme name.

* Add url check tool and model inference test tool.

* Modify tool name.

* Support duplicate mode of log json url check.

* Add regression benchmark evaluation automatic tool.

* Add train script generator.

* Only Support script running.

* Add evaluation results gather.

* Add exec Authority.

* Automatically make checkpoint root folder.

* Modify gather results save path.

* Coarse-grained train results gather tool.

* Complete benchmark train script.

* Make some little modifications.

* Fix checkpoint urls.

* Fix unet checkpoint urls.

* Fix fast scnn & fcn checkpoint url.

* Fix fast scnn checkpoint urls.

* Fix fast scnn url.

* Add differential results calculation.

* Add differential results of regression benchmark train results.

* Add an extra argument to select model.

* Update nonlocal_net & hrnet checkpoint url.

* Fix checkpoint url of hrnet and Fix some tta evaluation results and modify gather models tool.

* Modify fast scnn checkpoint url.

* Resolve new comments.

* Fix url check status code bug.

* Resolve some comments.

* Modify train scripts generator.

* Modify work_dir of regression benchmark results.

* model gather tool modification.
aravind-h-v pushed a commit to aravind-h-v/mmsegmentation that referenced this pull request Mar 27, 2023
wjkim81 pushed a commit to wjkim81/mmsegmentation that referenced this pull request Dec 3, 2023
* update install

* resolve comments

* rm mim

* resolve comments
sibozhang pushed a commit to sibozhang/mmsegmentation that referenced this pull request Mar 22, 2024
* Add ref to mmocr

* Add chinese version
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants